import base64 import os import gradio as gr from mcp import ClientSession, StdioServerParameters, types from mcp.client.stdio import stdio_client from smolagents import ToolCollection, CodeAgent, load_tool, tool, ToolCallingAgent, InferenceClientModel #, GradioUI from smolagents.mcp_client import MCPClient from smolagents import TransformersModel from dotenv import load_dotenv import yaml import requests import json from PIL import Image from datetime import datetime from outage_odyssey_ui import GradioUI import base64 from io import BytesIO from smolagents import InferenceClientModel # Load environment variables from .env file load_dotenv() MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY") ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY") CODEASTREAL_API_KEY = os.getenv("CODEASTREAL_API_KEY") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") HF_TOKEN = os.getenv("HF_TOKEN") USE_CLOUD_MODEL = os.getenv("USE_CLOUD_MODEL", "true") # Conditional import based on availability of Gemini API key GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") if USE_CLOUD_MODEL == 'true': from smolagents import LiteLLMModel #model = LiteLLMModel(model_id="gemini/gemini-2.0-flash", api_key=GEMINI_API_KEY) #model = LiteLLMModel(model_id="mistral/mistral-large-latest", api_key=MISTRAL_API_KEY) #model = LiteLLMModel(model_id="codestral/codestral-latest", api_key=CODEASTREAL_API_KEY) #model = LiteLLMModel(model_id="openai/gpt-4o", api_key=OPENAI_API_KEY) #model = LiteLLMModel(model_id="anthropic/claude-3-7-sonnet-latest", api_key=ANTHROPIC_API_KEY) model = InferenceClientModel( model_id="deepseek-ai/DeepSeek-V3-0324", provider="hyperbolic", api_key=HF_TOKEN, ) model_description = "This agent uses MCP tools and LLM Models using LiteLLMModel via API." print(model_description) else: from transformers import pipeline print("Loading local Qwen model...") model = TransformersModel( model_id="Qwen3-4B", device_map='auto', max_new_tokens=8192, trust_remote_code=True ) print("Local model loaded successfully.") model_description = "This agent uses MCP tools and a locally-run Qwen3-4B model." @tool def pil_to_base64(pil_image: Image.Image) -> str: """ Converts a PIL Image object to a base64-encoded PNG data URL. This tool takes a PIL Image object and encodes it into a base64 string formatted as a data URL, which can be used in HTML or other contexts that support embedded images. Args: pil_image (PIL.Image.Image): A PIL Image object to be converted. Returns: str: A string representing the image in base64 format, prefixed with the MIME type. The format is: 'data:image/png;base64,' Example: >>> pil_to_base64(Image.open('example.png')) '.... """ buffer = BytesIO() pil_image.save(buffer, format="PNG") img_str = base64.b64encode(buffer.getvalue()).decode() return f"data:image/png;base64,{img_str}" try: mcp_client = MCPClient({"url": "http://localhost:8000/sse"}) tools = mcp_client.get_tools() #print(tools.to_json()) tools_array = [{ "name": tool.name, "description": tool.description, "inputs": tool.inputs, "output_type": tool.output_type, "is_initialized": tool.is_initialized } for tool in tools] tool_names = [tool["name"] for tool in tools_array] print(f"Connected to MCP server. Available tools: {', '.join(tool_names)}") with open("prompts.yml", 'r', encoding='utf-8') as stream: prompt_templates = yaml.safe_load(stream) # Import tool from Hub #image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) agent = CodeAgent(tools=[ pil_to_base64,*tools], model=model, prompt_templates=prompt_templates, max_steps=10, planning_interval=5, additional_authorized_imports=['time', 'math', 'queue', 're', 'stat', 'collections', 'datetime', 'statistics', 'itertools', 'unicodedata', 'random', 'matplotlib.pyplot', 'open', 'pandas', 'numpy', 'json', 'yaml', 'plotly', 'pillow','PIL','base64' , 'io']) #prompt_templates=prompt_templates, agent.name = "Outage Odyssey Agent" GradioUI(agent=agent, file_upload_folder="uploaded_data").launch(server_name="0.0.0.0", server_port=7860,share=False,mcp_server=True) ##, file_upload_folder="uploaded_data", mcp_server=True,debug=True except Exception as e: print(f"Error starting Gradio: {str(e)}") finally: mcp_client.disconnect() print("MCP client disconnected")