Spaces:
Paused
Paused
Commit
Β·
9523e3c
1
Parent(s):
87f3cb8
added diagram
Browse files- README.md +135 -72
- diagram.svg +2 -0
README.md
CHANGED
@@ -24,78 +24,141 @@ In this demo, we demonstrate how to build such a system. To showcase its ability
|
|
24 |
|
25 |
The system follows a multi-stage pipeline that processes movie data and user current preferences to generate personalized recommendations:
|
26 |
|
27 |
-
```mermaid
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
%% ========================
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
%% ========================
|
45 |
-
|
46 |
-
%%
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
### Pipeline Stages
|
101 |
|
|
|
24 |
|
25 |
The system follows a multi-stage pipeline that processes movie data and user current preferences to generate personalized recommendations:
|
26 |
|
27 |
+
[//]: # (```mermaid)
|
28 |
+
|
29 |
+
[//]: # (graph TD)
|
30 |
+
|
31 |
+
[//]: # ( %% ========================)
|
32 |
+
|
33 |
+
[//]: # ( %% Data Preparation Section)
|
34 |
+
|
35 |
+
[//]: # ( %% ========================)
|
36 |
+
|
37 |
+
[//]: # ( A["π½οΈ Movie Titles Dataset"] --> B["Mistral LLM Embedding<br/>(Text Representation)"])
|
38 |
+
|
39 |
+
[//]: # ( B --> C["Graph Convolution Layers<br/>(Relationship Learning)"])
|
40 |
+
|
41 |
+
[//]: # ( C --> D["π Graph-Enhanced Embeddings"])
|
42 |
+
|
43 |
+
[//]: # ( )
|
44 |
+
[//]: # ( %% ========================)
|
45 |
+
|
46 |
+
[//]: # ( %% User Input Section)
|
47 |
+
|
48 |
+
[//]: # ( %% ========================)
|
49 |
+
|
50 |
+
[//]: # ( F["π¬ User's Liked Movies"] --> G["User Preference Profile<br/>(Average of Graph-Enhanced<br/>Movie Embeddings)"])
|
51 |
+
|
52 |
+
[//]: # ( H["π Natural Language Query<br/>(e.g. 'funny sci-fi movies')"] --> I["Query Embedding"])
|
53 |
+
|
54 |
+
[//]: # ( G --> J["π§© Combined User Vector"])
|
55 |
+
|
56 |
+
[//]: # ( I --> J)
|
57 |
+
|
58 |
+
[//]: # ( )
|
59 |
+
[//]: # ( %% ========================)
|
60 |
+
|
61 |
+
[//]: # ( %% System Flow)
|
62 |
+
|
63 |
+
[//]: # ( %% ========================)
|
64 |
+
|
65 |
+
[//]: # ( D --> K["π Similarity Matching"])
|
66 |
+
|
67 |
+
[//]: # ( J --> K)
|
68 |
+
|
69 |
+
[//]: # ( K --> L["π Top 100 Candidates"])
|
70 |
+
|
71 |
+
[//]: # ( L --> M["π€ AI Agent Ranking<br/>(Context-Aware Filtering)"])
|
72 |
+
|
73 |
+
[//]: # ( M --> N["π― Final Recommendations<br/>(Top 10 Movies)"])
|
74 |
+
|
75 |
+
[//]: # ( )
|
76 |
+
[//]: # ( %% ========================)
|
77 |
+
|
78 |
+
[//]: # ( %% Visual Grouping)
|
79 |
+
|
80 |
+
[//]: # ( %% ========================)
|
81 |
+
|
82 |
+
[//]: # ( subgraph "Data Preparation Pipeline")
|
83 |
+
|
84 |
+
[//]: # ( A)
|
85 |
+
|
86 |
+
[//]: # ( B)
|
87 |
+
|
88 |
+
[//]: # ( C)
|
89 |
+
|
90 |
+
[//]: # ( D)
|
91 |
+
|
92 |
+
[//]: # ( end)
|
93 |
+
|
94 |
+
[//]: # ( )
|
95 |
+
[//]: # ( subgraph "User Understanding")
|
96 |
+
|
97 |
+
[//]: # ( F)
|
98 |
+
|
99 |
+
[//]: # ( H)
|
100 |
+
|
101 |
+
[//]: # ( G)
|
102 |
+
|
103 |
+
[//]: # ( I)
|
104 |
+
|
105 |
+
[//]: # ( J)
|
106 |
+
|
107 |
+
[//]: # ( end)
|
108 |
+
|
109 |
+
[//]: # ( )
|
110 |
+
[//]: # ( subgraph "Two-Stage Retrieval")
|
111 |
+
|
112 |
+
[//]: # ( K)
|
113 |
+
|
114 |
+
[//]: # ( L)
|
115 |
+
|
116 |
+
[//]: # ( end)
|
117 |
+
|
118 |
+
[//]: # ( )
|
119 |
+
[//]: # ( subgraph "Intelligent Ranking")
|
120 |
+
|
121 |
+
[//]: # ( M)
|
122 |
+
|
123 |
+
[//]: # ( N)
|
124 |
+
|
125 |
+
[//]: # ( end)
|
126 |
+
|
127 |
+
[//]: # ( )
|
128 |
+
[//]: # ( %% ========================)
|
129 |
+
|
130 |
+
[//]: # ( %% Styling)
|
131 |
+
|
132 |
+
[//]: # ( %% ========================)
|
133 |
+
|
134 |
+
[//]: # ( style A fill:#e1f5fe,stroke:#039be5)
|
135 |
+
|
136 |
+
[//]: # ( style N fill:#c8e6c9,stroke:#2e7d32)
|
137 |
+
|
138 |
+
[//]: # ( style K fill:#fff3e0,stroke:#fb8c00)
|
139 |
+
|
140 |
+
[//]: # ( style M fill:#fce4ec,stroke:#e91e63)
|
141 |
+
|
142 |
+
[//]: # ( )
|
143 |
+
[//]: # ( classDef data fill:#e1f5fe,stroke:#039be5)
|
144 |
+
|
145 |
+
[//]: # ( classDef result fill:#c8e6c9,stroke:#2e7d32)
|
146 |
+
|
147 |
+
[//]: # ( classDef process fill:#fff3e0,stroke:#fb8c00)
|
148 |
+
|
149 |
+
[//]: # ( classDef ai fill:#fce4ec,stroke:#e91e63)
|
150 |
+
|
151 |
+
[//]: # ( )
|
152 |
+
[//]: # ( class A data)
|
153 |
+
|
154 |
+
[//]: # ( class N result)
|
155 |
+
|
156 |
+
[//]: # ( class K,L process)
|
157 |
+
|
158 |
+
[//]: # ( class M ai)
|
159 |
+
|
160 |
+
[//]: # (```)
|
161 |
+

|
162 |
|
163 |
### Pipeline Stages
|
164 |
|
diagram.svg
ADDED
|