Josep Pon Farreny commited on
Commit
3b57587
·
1 Parent(s): 68b2c16

feat: Add two sample gradio tools

Browse files
app.py CHANGED
@@ -1,64 +1,15 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
 
2
 
3
+ from tdagent.tools.get_url_content import gr_get_url_http_content
4
+ from tdagent.tools.letter_counter import gr_letter_counter
 
 
5
 
6
 
7
+ gr_app = gr.TabbedInterface(
8
+ [
9
+ gr_get_url_http_content,
10
+ gr_letter_counter,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ],
12
  )
13
 
 
14
  if __name__ == "__main__":
15
+ gr_app.launch(mcp_server=True)
tdagent/tools/__init__.py ADDED
File without changes
tdagent/tools/get_url_content.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import enum
2
+ from collections.abc import Sequence
3
+
4
+ import gradio as gr
5
+ import requests
6
+
7
+
8
+ class HttpContentType(str, enum.Enum):
9
+ """Http content type values."""
10
+
11
+ HTML = "text/html"
12
+ JSON = "application/json"
13
+
14
+
15
+ def get_url_http_content(
16
+ url: str,
17
+ content_type: Sequence[HttpContentType] | None = None,
18
+ timeout: int = 30,
19
+ ) -> tuple[str, str]:
20
+ """Get the content of a URL using an HTTP GET request.
21
+
22
+ Args:
23
+ url: The URL to fetch the content from.
24
+ content_type: If given it should contain the expected
25
+ content types in the response body. The server may
26
+ not honor the requested content types.
27
+ timeout: Request timeout in seconds. Defaults to 30.
28
+
29
+ Returns:
30
+ A pair of strings (content, error_message). If there is an
31
+ error getting content from the URL the `content` will be
32
+ empty and `error_message` will, usually, contain the error
33
+ cause. Otherwise, `error_message` will be empty and the
34
+ content will be filled with data fetched from the URL.
35
+ """
36
+ headers = {}
37
+
38
+ if content_type:
39
+ headers["Accept"] = ",".join(content_type)
40
+ response = requests.get(
41
+ url,
42
+ headers=headers,
43
+ timeout=timeout,
44
+ )
45
+
46
+ try:
47
+ response.raise_for_status()
48
+ except requests.HTTPError as err:
49
+ return "", str(err)
50
+
51
+ return response.text, ""
52
+
53
+
54
+ gr_get_url_http_content = gr.Interface(
55
+ fn=get_url_http_content,
56
+ inputs=["text", "text"],
57
+ outputs="text",
58
+ title="Get the content of a URL using an HTTP GET request.",
59
+ description=(
60
+ "Get the content of a URL in one of the specified content types."
61
+ " The server may not honor the content type and if it fails the"
62
+ " reason should also be returned with the corresponding HTTP"
63
+ " error code."
64
+ ),
65
+ )
tdagent/tools/letter_counter.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+
4
+ def letter_counter(word: str, letter: str) -> int:
5
+ """Count the occurrences of a specific letter in a word.
6
+
7
+ Args:
8
+ word: The word or phrase to analyze
9
+ letter: The letter to count occurrences of
10
+
11
+ Returns:
12
+ The number of times the letter appears in the word
13
+ """
14
+ return word.lower().count(letter.lower())
15
+
16
+
17
+ gr_letter_counter = gr.Interface(
18
+ fn=letter_counter,
19
+ inputs=["text", "text"],
20
+ outputs="number",
21
+ title="Letter Counter",
22
+ description="Count how many times a letter appears in a word",
23
+ )