File size: 2,306 Bytes
ecde422
d10070a
0fb453e
ecde422
 
 
ce19262
ecde422
 
9d84265
 
eaf43f9
ecde422
 
9d84265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
title: Wild Fire Tracker
emoji: πŸ”₯
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 5.33.1
app_file: app.py
pinned: false
license: mit
short_description: A wildfire monitor that alerts authorities in event of fire
tag: mcp-server-track
---

# πŸ”₯ Wild Fire Tracker

Real-time fire and smoke detection system using computer vision and AI. Available as both a web application and MCP (Model Context Protocol) server.

## Features

- πŸ”₯ **Fire Detection**: AI-powered fire detection with confidence scores
- πŸ’¨ **Smoke Detection**: Advanced smoke detection capabilities  
- πŸ“Ή **Multiple Sources**: Webcam, RTSP streams, and video file uploads
- ⏱️ **Real-time Analysis**: Frame analysis every 10 seconds
- 🎨 **Visual Feedback**: Color-coded status overlays on video
- πŸ“Š **Confidence Scores**: Shows detection confidence percentages

## Installation

```bash
pip install gradio opencv-python-headless torch transformers pillow numpy
```

## Usage

### 1. Gradio Web Application

Run the web interface:

```bash
python app.py
```

Then open http://localhost:7860 in your browser.

**Features:**
- Upload video files (MP4, AVI, MOV)
- Connect to webcam or RTSP streams
- Real-time video display with status overlay
- Detection status with timestamps

### 2. Standalone MCP Server

For integration with MCP clients:

```bash
# Install MCP dependency
pip install mcp

# Run MCP server
python mcp_server_standalone.py
```

**MCP Tools:**
- `analyze_image`: Analyze base64 encoded images for fire/smoke

**Example MCP Client Usage:**
```python
import base64
import json

# Encode image to base64
with open("image.jpg", "rb") as f:
    image_b64 = base64.b64encode(f.read()).decode()

# Call MCP tool
result = await client.call_tool("analyze_image", {
    "image_base64": image_b64
})
```

## Sample Test Videos

- [Fire Test Video](https://www.pexels.com/video/a-man-carrying-gear-walking-away-from-a-controlled-fire-8552246/)
- [Smoke Test Video](https://www.pexels.com/video/aerial-view-of-controlled-forest-fire-in-spring-31361444/)

## Status Legend

- 🟒 **Green**: All clear (no fire/smoke detected)
- 🟠 **Orange**: Fire detected
- ⚫ **Gray**: Smoke detected  
- πŸ”΄ **Red**: Error or both fire & smoke detected

## License

MIT License - see LICENSE file for details.