updated
Browse files- .gitignore +1 -0
- app.py +79 -36
- pyproject.toml +2 -1
- uv.lock +0 -0
- yolov8x-world.pt +3 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
.env
|
|
|
|
1 |
.env
|
2 |
+
yolov8x-world.pt.eac99ff4aff54a2a95f4462dc49b3d49.partial
|
app.py
CHANGED
@@ -2,50 +2,89 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
-
from mcp import MCP
|
6 |
import time
|
7 |
import os
|
8 |
from datetime import datetime
|
|
|
|
|
|
|
9 |
|
10 |
"""
|
11 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
12 |
"""
|
13 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
14 |
-
mcp = MCP()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
return
|
31 |
|
32 |
-
def
|
33 |
-
#
|
34 |
-
|
35 |
-
message = f"{detection_type} detected at {location} on {timestamp}"
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def check_for_fire():
|
51 |
# Request webcam access
|
@@ -59,19 +98,23 @@ def check_for_fire():
|
|
59 |
cap.release()
|
60 |
return "Error: Could not read from webcam"
|
61 |
|
62 |
-
# Detect fire
|
63 |
-
fire_detected =
|
64 |
|
65 |
# Release webcam
|
66 |
cap.release()
|
67 |
|
|
|
|
|
|
|
68 |
if fire_detected:
|
69 |
-
# Get
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
else:
|
74 |
-
return "No fire detected"
|
75 |
|
76 |
def respond(
|
77 |
message,
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import cv2
|
4 |
import numpy as np
|
|
|
5 |
import time
|
6 |
import os
|
7 |
from datetime import datetime
|
8 |
+
from ultralytics import YOLO
|
9 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
10 |
+
import torch
|
11 |
|
12 |
"""
|
13 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
14 |
"""
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
16 |
|
17 |
+
# Load YOLO-World model
|
18 |
+
model = YOLO('yolov8x-world.pt')
|
19 |
+
|
20 |
+
# Load CLIP model for image understanding
|
21 |
+
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
22 |
+
clip_model = AutoModelForCausalLM.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
+
|
24 |
+
def analyze_fire_scene(frame):
|
25 |
+
# Run YOLO-World inference with custom prompts
|
26 |
+
results = model(frame, text=["fire", "flame", "smoke", "burning", "wildfire"])
|
27 |
|
28 |
+
# Initialize detection flags and details
|
29 |
+
fire_detected = False
|
30 |
+
smoke_detected = False
|
31 |
+
fire_details = []
|
32 |
|
33 |
+
# Process results
|
34 |
+
for result in results:
|
35 |
+
boxes = result.boxes
|
36 |
+
for box in boxes:
|
37 |
+
confidence = float(box.conf[0])
|
38 |
+
if confidence > 0.5:
|
39 |
+
class_name = result.names[int(box.cls[0])]
|
40 |
+
if class_name in ['fire', 'flame', 'burning', 'wildfire']:
|
41 |
+
fire_detected = True
|
42 |
+
# Get bounding box coordinates
|
43 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
44 |
+
# Extract the region of interest
|
45 |
+
roi = frame[int(y1):int(y2), int(x1):int(x2)]
|
46 |
+
fire_details.append({
|
47 |
+
'type': class_name,
|
48 |
+
'confidence': confidence,
|
49 |
+
'location': (x1, y1, x2, y2),
|
50 |
+
'roi': roi
|
51 |
+
})
|
52 |
+
elif class_name == 'smoke':
|
53 |
+
smoke_detected = True
|
54 |
|
55 |
+
return fire_detected, smoke_detected, fire_details
|
56 |
|
57 |
+
def get_fire_analysis(frame, fire_details):
|
58 |
+
# Prepare image for CLIP
|
59 |
+
inputs = processor(images=frame, return_tensors="pt")
|
|
|
60 |
|
61 |
+
# Generate questions about the fire
|
62 |
+
questions = [
|
63 |
+
"What is the intensity of the fire?",
|
64 |
+
"Is the fire spreading?",
|
65 |
+
"What is the color of the smoke?",
|
66 |
+
"Are there any people or buildings nearby?",
|
67 |
+
"What is the approximate size of the fire?"
|
68 |
+
]
|
69 |
|
70 |
+
analysis = []
|
71 |
+
for question in questions:
|
72 |
+
# Process question with CLIP
|
73 |
+
text_inputs = processor(text=question, return_tensors="pt", padding=True)
|
74 |
+
|
75 |
+
# Get image-text similarity
|
76 |
+
with torch.no_grad():
|
77 |
+
image_features = clip_model.get_image_features(**inputs)
|
78 |
+
text_features = clip_model.get_text_features(**text_inputs)
|
79 |
+
|
80 |
+
# Calculate similarity
|
81 |
+
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
82 |
+
|
83 |
+
# Generate response based on similarity
|
84 |
+
if similarity > 0.5:
|
85 |
+
analysis.append(f"Q: {question}\nA: Based on visual analysis, {question.lower()}")
|
86 |
+
|
87 |
+
return analysis
|
88 |
|
89 |
def check_for_fire():
|
90 |
# Request webcam access
|
|
|
98 |
cap.release()
|
99 |
return "Error: Could not read from webcam"
|
100 |
|
101 |
+
# Detect fire and smoke
|
102 |
+
fire_detected, smoke_detected, fire_details = analyze_fire_scene(frame)
|
103 |
|
104 |
# Release webcam
|
105 |
cap.release()
|
106 |
|
107 |
+
# Get location (you might want to implement a more sophisticated location detection)
|
108 |
+
location = "Webcam Location" # Replace with actual location detection
|
109 |
+
|
110 |
if fire_detected:
|
111 |
+
# Get detailed analysis of the fire
|
112 |
+
analysis = get_fire_analysis(frame, fire_details)
|
113 |
+
return f"Fire detected at {location}!\n\nAnalysis:\n" + "\n".join(analysis)
|
114 |
+
elif smoke_detected:
|
115 |
+
return f"Smoke detected at {location}!"
|
116 |
else:
|
117 |
+
return "No fire or smoke detected"
|
118 |
|
119 |
def respond(
|
120 |
message,
|
pyproject.toml
CHANGED
@@ -3,7 +3,7 @@ name = "wild-fire-tracker"
|
|
3 |
version = "0.1.0"
|
4 |
description = "Add your description here"
|
5 |
readme = "README.md"
|
6 |
-
requires-python = ">=3.
|
7 |
dependencies = [
|
8 |
"bs4>=0.0.2",
|
9 |
"gradio[cli]>=5.33.1",
|
@@ -13,5 +13,6 @@ dependencies = [
|
|
13 |
"pillow>=11.2.1",
|
14 |
"torch[cuda]>=2.7.1",
|
15 |
"transformers>=4.52.4",
|
|
|
16 |
]
|
17 |
|
|
|
3 |
version = "0.1.0"
|
4 |
description = "Add your description here"
|
5 |
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
dependencies = [
|
8 |
"bs4>=0.0.2",
|
9 |
"gradio[cli]>=5.33.1",
|
|
|
13 |
"pillow>=11.2.1",
|
14 |
"torch[cuda]>=2.7.1",
|
15 |
"transformers>=4.52.4",
|
16 |
+
"ultralytics>=8.0.0",
|
17 |
]
|
18 |
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
yolov8x-world.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b99398e46cffbf2b9a7e668512fa295f0d710d173ae0a815ec706ced5d1099b
|
3 |
+
size 147961954
|