Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
""" | |
NEBULA-X: Enhanced Unified Holographic Neural Network | |
Corrected & Hardened version | |
Original author: Francisco Angulo de Lafuente - Agnuxo | |
This file is a patched, complete and ready-to-run version of nebula_x_complete.py | |
(robust handling for complex arrays, improved holographic correlation, safer quantum state | |
initialization and other defensive fixes). | |
""" | |
import os | |
import sys | |
import json | |
import time | |
import logging | |
import asyncio | |
import threading | |
from typing import Dict, List, Tuple, Optional, Any, Union | |
from dataclasses import dataclass, field | |
from abc import ABC, abstractmethod | |
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor | |
import subprocess | |
# Core scientific computing | |
import numpy as np | |
import scipy as sp | |
from scipy import ndimage, fft, optimize | |
import pandas as pd | |
# Machine Learning & Deep Learning (optional usage) | |
try: | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.cuda as cuda | |
from torch.utils.data import DataLoader, Dataset | |
import torchvision.transforms as transforms | |
TORCH_AVAILABLE = True | |
except Exception: | |
TORCH_AVAILABLE = False | |
# Quantum Computing | |
try: | |
import pennylane as qml | |
from pennylane import numpy as pnp | |
QUANTUM_AVAILABLE = True | |
except ImportError: | |
QUANTUM_AVAILABLE = False | |
print("Warning: PennyLane not available. Quantum features disabled.") | |
# GPU Acceleration & Raytracing | |
try: | |
import cupy as cp | |
import cupyx.scipy.fft as cp_fft | |
CUPY_AVAILABLE = True | |
except Exception: | |
CUPY_AVAILABLE = False | |
print("Warning: CuPy not available. GPU acceleration limited.") | |
# Optical Computing & CUDA kernels | |
try: | |
import pycuda.driver as cuda_driver | |
import pycuda.autoinit | |
import pycuda.gpuarray as gpuarray | |
from pycuda.compiler import SourceModule | |
PYCUDA_AVAILABLE = True | |
except Exception: | |
PYCUDA_AVAILABLE = False | |
print("Warning: PyCUDA not available. Custom CUDA kernels disabled.") | |
# Networking & P2P | |
import socket | |
import websockets | |
import requests | |
from urllib.parse import urlparse | |
# Evolutionary Algorithms | |
try: | |
from deap import base, creator, tools, algorithms | |
DEAP_AVAILABLE = True | |
except Exception: | |
DEAP_AVAILABLE = False | |
print("Warning: DEAP not available. Evolutionary optimization disabled.") | |
# Holographic Processing | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
# Configuration & Utilities | |
import yaml | |
from datetime import datetime | |
import pickle | |
import hashlib | |
import uuid | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
# Helper utilities | |
def ensure_complex_array(arr: np.ndarray) -> np.ndarray: | |
"""Return a complex copy of arr without losing imaginary parts and avoiding ComplexWarning.""" | |
arr = np.asarray(arr) | |
if np.iscomplexobj(arr): | |
return arr.astype(np.complex128) | |
else: | |
return arr.astype(np.complex128) | |
def safe_reshape_to_square_2d(data: np.ndarray) -> np.ndarray: | |
"""Pad (with complex zeros) and reshape 1D data to a square 2D complex array.""" | |
data = np.asarray(data) | |
if data.ndim == 1: | |
size = int(np.ceil(np.sqrt(data.size))) | |
total = size * size | |
padded = np.zeros(total, dtype=np.complex128) | |
padded[:data.size] = data.astype(np.complex128) | |
return padded.reshape(size, size) | |
elif data.ndim == 2: | |
return ensure_complex_array(data) | |
else: | |
# Flatten high-dim arrays then reshape | |
flat = data.flatten() | |
return safe_reshape_to_square_2d(flat) | |
# Constants | |
LIGHT_SPEED = 299792458 # m/s | |
PLANCK_CONSTANT = 6.62607015e-34 # Jβ Hzβ»ΒΉ | |
BOLTZMANN_CONSTANT = 1.380649e-23 # Jβ Kβ»ΒΉ | |
class NebulaConfig: | |
"""Complete configuration for NEBULA-X""" | |
nebula_space_size: Tuple[int, int, int] = (1000, 1000, 1000) | |
max_neurons: int = 1000000 | |
initial_neurons: int = 10000 | |
neuron_types: List[str] = field(default_factory=lambda: ['photonic', 'quantum', 'classical']) | |
# Optical | |
wavelength: float = 632.8e-9 | |
refractive_index: float = 1.0 | |
coherence_length: float = 1.0 | |
beam_diameter: float = 1e-3 | |
# Quantum | |
qubits_per_neuron: int = 4 | |
quantum_noise_level: float = 0.01 | |
decoherence_time: float = 1e-6 | |
# Raytracing | |
rays_per_neuron: int = 1000 | |
max_bounces: int = 10 | |
raytracing_resolution: Tuple[int, int] = (1024, 1024) | |
monte_carlo_samples: int = 10000 | |
# Gravitational dynamics | |
gravitational_constant: float = 1e-10 | |
neuron_mass: float = 1.0 | |
attraction_threshold: float = 0.1 | |
repulsion_threshold: float = 0.05 | |
# Evolutionary | |
population_size: int = 100 | |
mutation_rate: float = 0.1 | |
crossover_rate: float = 0.8 | |
generations: int = 1000 | |
# P2P | |
p2p_port: int = 8080 | |
max_peers: int = 50 | |
knowledge_sync_interval: float = 10.0 | |
# Benchmark | |
benchmark_datasets: List[str] = field(default_factory=lambda: ['mmlu', 'gsm8k']) | |
evaluation_interval: int = 100 | |
# Hardware | |
use_gpu: bool = True | |
use_rt_cores: bool = True | |
use_tensor_cores: bool = True | |
max_gpu_memory: float = 0.8 | |
class QuantumNeuron: | |
"""Quantum neuron with local holographic memory""" | |
def __init__(self, neuron_id: str, config: NebulaConfig): | |
self.id = neuron_id | |
self.config = config | |
self.position = np.random.rand(3) * 1000 | |
self.velocity = np.zeros(3) | |
self.mass = config.neuron_mass | |
self.luminosity = 1.0 | |
self.connections: Dict[str, Any] = {} | |
# Quantum state (if available) otherwise simulated complex state | |
if QUANTUM_AVAILABLE: | |
try: | |
self.quantum_device = qml.device('default.qubit', wires=config.qubits_per_neuron) | |
self.quantum_memory = self._initialize_quantum_state() | |
except Exception as e: | |
logger.warning(f"Failed to initialize PennyLane device: {e}") | |
self.quantum_memory = self._simulate_quantum_state() | |
else: | |
self.quantum_memory = self._simulate_quantum_state() | |
self.optical_properties = { | |
'reflectivity': float(np.random.rand()), | |
'transmissivity': float(np.random.rand()), | |
'phase_shift': float(np.random.rand() * 2 * np.pi), | |
'polarization': np.random.rand(3).tolist(), | |
'spectrum': np.random.rand(100).tolist() | |
} | |
self.holographic_memory = np.zeros((64, 64), dtype=np.complex128) | |
def _simulate_quantum_state(self) -> np.ndarray: | |
"""Create a normalized complex state vector for simulation.""" | |
size = 2 ** self.config.qubits_per_neuron | |
state = np.random.randn(size) + 1j * np.random.randn(size) | |
state = state.astype(np.complex128) | |
norm = np.linalg.norm(state) | |
if norm == 0: | |
state[0] = 1.0 | |
norm = 1.0 | |
return state / norm | |
def _initialize_quantum_state(self) -> np.ndarray: | |
"""Initialize a quantum state using PennyLane qnode (if available)""" | |
def quantum_circuit(): | |
for i in range(self.config.qubits_per_neuron): | |
qml.RY(np.random.rand() * np.pi, wires=i) | |
qml.RZ(np.random.rand() * 2 * np.pi, wires=i) | |
return qml.state() | |
return np.array(quantum_circuit()) | |
def quantum_process(self, input_data: np.ndarray) -> np.ndarray: | |
"""Process input with the neuron's quantum memory (simulated if PennyLane not available).""" | |
input_data = np.asarray(input_data) | |
if not QUANTUM_AVAILABLE: | |
# Simulated processing: project input onto quantum memory (real part) | |
try: | |
# make shapes compatible | |
mem = np.asarray(self.quantum_memory) | |
vec = np.resize(input_data, mem.shape) | |
return np.real(np.vdot(mem, vec)) * np.ones(self.config.qubits_per_neuron) | |
except Exception: | |
return np.zeros(self.config.qubits_per_neuron) | |
# If quantum available, build a small qnode | |
def qnn(inputs): | |
for i, val in enumerate(inputs[: self.config.qubits_per_neuron]): | |
qml.RY(float(val) * np.pi, wires=i) | |
# simple entangling layer | |
for i in range(self.config.qubits_per_neuron - 1): | |
qml.CNOT(wires=[i, i + 1]) | |
return [qml.expval(qml.PauliZ(i)) for i in range(self.config.qubits_per_neuron)] | |
# reshape input | |
inputs = np.resize(input_data, (self.config.qubits_per_neuron,)) | |
return np.array(qnn(inputs)) | |
def gravitational_force(self, other_neuron: 'QuantumNeuron') -> np.ndarray: | |
r_vec = other_neuron.position - self.position | |
r_mag = np.linalg.norm(r_vec) | |
if r_mag < 1e-6: | |
return np.zeros(3) | |
F_mag = ( | |
self.config.gravitational_constant * self.mass * other_neuron.mass | |
* self.luminosity * other_neuron.luminosity | |
) / (r_mag ** 2) | |
return F_mag * (r_vec / r_mag) | |
def update_position(self, dt: float, forces: np.ndarray): | |
acceleration = forces / max(1e-12, self.mass) | |
new_position = self.position + self.velocity * dt + 0.5 * acceleration * dt ** 2 | |
# Clip per-dimension with nebula_space_size | |
nx, ny, nz = self.config.nebula_space_size | |
new_position = np.clip(new_position, 0, [nx, ny, nz]) | |
self.velocity += acceleration * dt | |
self.position = new_position | |
def holographic_encode(self, data: np.ndarray) -> np.ndarray: | |
"""Encode input data into the neuron's local holographic memory and return hologram.""" | |
data2d = safe_reshape_to_square_2d(np.asarray(data)) | |
# create reference wave | |
h, w = data2d.shape | |
y, x = np.indices((h, w)) | |
reference_wave = np.exp(1j * np.pi * (x + y)) | |
object_wave = data2d.astype(np.complex128) | |
hologram = np.abs(object_wave + reference_wave) ** 2 | |
self.holographic_memory = np.fft.fft2(hologram) | |
return hologram | |
def holographic_decode(self) -> np.ndarray: | |
reconstructed = np.fft.ifft2(self.holographic_memory) | |
return np.real(reconstructed) | |
class RaytracingEngine: | |
def __init__(self, config: NebulaConfig): | |
self.config = config | |
self.scene_buffer = None | |
self.ray_buffer = None | |
self.cuda_module = None | |
if PYCUDA_AVAILABLE and config.use_gpu: | |
try: | |
self._initialize_cuda_kernels() | |
except Exception as e: | |
logger.warning(f"CUDA kernel init failed: {e}") | |
self.cuda_module = None | |
def _initialize_cuda_kernels(self): | |
cuda_code = r""" | |
#include <curand_kernel.h> | |
__global__ void trace_rays(float *rays, float *neurons, float *output, | |
int num_rays, int num_neurons) { | |
int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
if (idx >= num_rays) return; | |
curandState state; | |
curand_init(idx, 0, 0, &state); | |
float3 origin = make_float3(rays[idx*6], rays[idx*6+1], rays[idx*6+2]); | |
float3 direction = make_float3(rays[idx*6+3], rays[idx*6+4], rays[idx*6+5]); | |
float intensity = 1.0f; | |
float3 color = make_float3(1.0f, 1.0f, 1.0f); | |
for (int bounce = 0; bounce < 10; bounce++) { | |
float min_distance = INFINITY; | |
int hit_neuron = -1; | |
for (int n = 0; n < num_neurons; n++) { | |
float3 neuron_pos = make_float3(neurons[n*7], neurons[n*7+1], neurons[n*7+2]); | |
float neuron_radius = neurons[n*7+3]; | |
float3 oc = origin - neuron_pos; | |
float a = dot(direction, direction); | |
float b = 2.0f * dot(oc, direction); | |
float c = dot(oc, oc) - neuron_radius * neuron_radius; | |
float discriminant = b*b - 4*a*c; | |
if (discriminant > 0) { | |
float distance = (-b - sqrt(discriminant)) / (2.0f * a); | |
if (distance > 0.001f && distance < min_distance) { | |
min_distance = distance; | |
hit_neuron = n; | |
} | |
} | |
} | |
if (hit_neuron == -1) break; | |
origin = origin + direction * min_distance; | |
float reflectivity = neurons[hit_neuron*7+4]; | |
float phase_shift = neurons[hit_neuron*7+6]; | |
float3 normal = normalize(origin - make_float3(neurons[hit_neuron*7], | |
neurons[hit_neuron*7+1], | |
neurons[hit_neuron*7+2])); | |
if (curand_uniform(&state) < reflectivity) { | |
direction = direction - 2.0f * dot(direction, normal) * normal; | |
intensity *= reflectivity; | |
} else { | |
intensity *= (1.0f - reflectivity); | |
break; | |
} | |
color.x *= cos(phase_shift); | |
color.y *= cos(phase_shift + 2.094f); | |
color.z *= cos(phase_shift + 4.189f); | |
intensity *= 0.9f; | |
if (intensity < 0.01f) break; | |
} | |
output[idx*4] = intensity; | |
output[idx*4+1] = color.x; | |
output[idx*4+2] = color.y; | |
output[idx*4+3] = color.z; | |
} | |
""" | |
try: | |
self.cuda_module = SourceModule(cuda_code) | |
self.trace_rays_kernel = self.cuda_module.get_function("trace_rays") | |
logger.info("CUDA raytracing kernels initialized successfully") | |
except Exception as e: | |
logger.warning(f"Failed to initialize CUDA kernels: {e}") | |
self.cuda_module = None | |
def trace_neural_rays(self, neurons: List[QuantumNeuron], input_data: np.ndarray) -> np.ndarray: | |
num_neurons = len(neurons) | |
if num_neurons == 0: | |
return np.zeros((0, 4), dtype=np.float32) | |
num_rays = max(1, int(self.config.rays_per_neuron * num_neurons)) | |
rays = self._generate_rays(num_rays) | |
neuron_data = np.zeros((num_neurons, 7), dtype=np.float32) | |
for i, neuron in enumerate(neurons): | |
neuron_data[i, :3] = np.asarray(neuron.position, dtype=np.float32) | |
neuron_data[i, 3] = 1.0 | |
neuron_data[i, 4] = float(neuron.optical_properties.get('reflectivity', 0.5)) | |
neuron_data[i, 5] = float(neuron.optical_properties.get('transmissivity', 0.0)) | |
neuron_data[i, 6] = float(neuron.optical_properties.get('phase_shift', 0.0)) | |
if PYCUDA_AVAILABLE and self.cuda_module is not None: | |
try: | |
return self._cuda_raytrace(rays, neuron_data) | |
except Exception as e: | |
logger.warning(f"CUDA raytrace failed, falling back to CPU: {e}") | |
return self._cpu_raytrace(rays, neuron_data) | |
def _generate_rays(self, num_rays: int) -> np.ndarray: | |
rays = np.zeros((num_rays, 6), dtype=np.float32) | |
# positions | |
nx, ny, nz = self.config.nebula_space_size | |
rays[:, :3] = np.random.rand(num_rays, 3) * np.array([nx, ny, nz]) | |
# directions | |
phi = np.random.rand(num_rays) * 2 * np.pi | |
costheta = 1 - 2 * np.random.rand(num_rays) | |
theta = np.arccos(np.clip(costheta, -1, 1)) | |
rays[:, 3] = np.sin(theta) * np.cos(phi) | |
rays[:, 4] = np.sin(theta) * np.sin(phi) | |
rays[:, 5] = np.cos(theta) | |
return rays | |
def _cuda_raytrace(self, rays: np.ndarray, neurons: np.ndarray) -> np.ndarray: | |
num_rays = rays.shape[0] | |
rays_gpu = gpuarray.to_gpu(rays.astype(np.float32)) | |
neurons_gpu = gpuarray.to_gpu(neurons.astype(np.float32)) | |
output_gpu = gpuarray.zeros((num_rays * 4,), dtype=np.float32) | |
block_size = 256 | |
grid_size = (num_rays + block_size - 1) // block_size | |
self.trace_rays_kernel( | |
rays_gpu, neurons_gpu, output_gpu, | |
np.int32(num_rays), np.int32(neurons.shape[0]), | |
block=(block_size, 1, 1), grid=(grid_size, 1) | |
) | |
out = output_gpu.get().reshape(num_rays, 4) | |
return out | |
def _cpu_raytrace(self, rays: np.ndarray, neurons: np.ndarray) -> np.ndarray: | |
num_rays = rays.shape[0] | |
output = np.zeros((num_rays, 4), dtype=np.float32) | |
for i in range(num_rays): | |
origin = rays[i, :3].copy() | |
direction = rays[i, 3:6].copy() | |
direction = direction / (np.linalg.norm(direction) + 1e-12) | |
intensity = 1.0 | |
for bounce in range(min(5, self.config.max_bounces)): | |
distances = np.linalg.norm(neurons[:, :3] - origin[None, :], axis=1) | |
closest = np.argmin(distances) | |
if distances[closest] > 10.0: | |
break | |
reflectivity = float(neurons[closest, 4]) | |
intensity *= reflectivity * 0.9 | |
direction = direction + 0.1 * np.random.randn(3) | |
direction /= (np.linalg.norm(direction) + 1e-12) | |
origin = neurons[closest, :3] | |
if intensity < 0.01: | |
break | |
output[i, 0] = intensity | |
output[i, 1:4] = intensity | |
return output | |
class HolographicMemory: | |
def __init__(self, config: NebulaConfig): | |
self.config = config | |
self.memory_planes: Dict[str, Dict[str, Any]] = {} | |
self.reconstruction_cache: Dict[str, np.ndarray] = {} | |
def store_pattern(self, key: str, data: np.ndarray, reference_beam: Optional[np.ndarray] = None) -> bool: | |
try: | |
data_c = ensure_complex_array(np.asarray(data)) | |
if reference_beam is None: | |
reference_beam = self._generate_reference_beam(data_c.shape) | |
object_beam = data_c / (np.max(np.abs(data_c)) + 1e-12) | |
interference = np.abs(object_beam + reference_beam) ** 2 | |
self.memory_planes[key] = { | |
'interference': interference, | |
'reference': reference_beam, | |
'metadata': { | |
'timestamp': time.time(), | |
'shape': data_c.shape, | |
'hash': hashlib.md5(data_c.tobytes()).hexdigest() | |
} | |
} | |
if key in self.reconstruction_cache: | |
del self.reconstruction_cache[key] | |
logger.info(f"Stored holographic pattern: {key}") | |
return True | |
except Exception as e: | |
logger.error(f"Failed to store pattern {key}: {e}") | |
return False | |
def retrieve_pattern(self, key: str) -> Optional[np.ndarray]: | |
if key not in self.memory_planes: | |
return None | |
if key in self.reconstruction_cache: | |
return self.reconstruction_cache[key] | |
try: | |
plane = self.memory_planes[key] | |
interference = np.asarray(plane['interference']) | |
reference = np.asarray(plane['reference']) | |
reconstructed = interference * np.conj(reference) | |
reconstructed_fft = np.fft.fft2(reconstructed) | |
h, w = reconstructed_fft.shape | |
mask = np.zeros((h, w), dtype=float) | |
ch, cw = h // 2, w // 2 | |
hh = max(1, h // 4) | |
ww = max(1, w // 4) | |
mask[ch - hh: ch + hh, cw - ww: cw + ww] = 1 | |
filtered_fft = reconstructed_fft * mask | |
result = np.fft.ifft2(filtered_fft) | |
self.reconstruction_cache[key] = result | |
logger.debug(f"Retrieved holographic pattern: {key}") | |
return result | |
except Exception as e: | |
logger.error(f"Failed to retrieve pattern {key}: {e}") | |
return None | |
def _generate_reference_beam(self, shape: Tuple[int, ...]) -> np.ndarray: | |
shape = tuple(int(s) for s in shape) | |
if len(shape) == 1: | |
x = np.arange(shape[0]) | |
return np.exp(1j * 2 * np.pi * x / (shape[0] + 1e-12)).astype(np.complex128) | |
elif len(shape) == 2: | |
h, w = shape | |
x, y = np.meshgrid(np.arange(w), np.arange(h)) | |
angle = np.random.rand() * 2 * np.pi | |
kx = np.cos(angle) | |
ky = np.sin(angle) | |
return np.exp(1j * 2 * np.pi * (kx * x / (w + 1e-12) + ky * y / (h + 1e-12))).astype(np.complex128) | |
else: | |
ref = np.ones(shape, dtype=np.complex128) | |
for dim in range(len(shape)): | |
dim_ref = self._generate_reference_beam((shape[dim],)) | |
# reshape to broadcast | |
reshape_shape = [1] * len(shape) | |
reshape_shape[dim] = shape[dim] | |
ref *= dim_ref.reshape(tuple(reshape_shape)) | |
return ref | |
def holographic_rag_search(self, query: np.ndarray, top_k: int = 5) -> List[Tuple[str, float, Optional[np.ndarray]]]: | |
results: List[Tuple[str, float, Optional[np.ndarray]]] = [] | |
try: | |
query_hologram = self._data_to_hologram(query) | |
except Exception as e: | |
logger.warning(f"Failed to convert query to hologram: {e}") | |
return results | |
for key, plane in list(self.memory_planes.items()): | |
try: | |
stored_pattern = np.asarray(plane.get('interference')) | |
# ensure shapes compatible | |
corr = self._holographic_correlation(query_hologram, stored_pattern) | |
score = float(np.max(np.abs(corr))) if corr.size > 0 else 0.0 | |
retrieved = self.retrieve_pattern(key) | |
results.append((key, score, retrieved)) | |
except Exception as e: | |
logger.warning(f"Error in holographic search for {key}: {e}") | |
continue | |
results.sort(key=lambda x: x[1], reverse=True) | |
return results[:top_k] | |
def _data_to_hologram(self, data: np.ndarray) -> np.ndarray: | |
data = np.asarray(data) | |
if data.ndim == 1: | |
data2d = safe_reshape_to_square_2d(data) | |
else: | |
data2d = ensure_complex_array(data) | |
reference = self._generate_reference_beam(data2d.shape) | |
return np.abs(data2d.astype(np.complex128) + reference) ** 2 | |
def _holographic_correlation(self, pattern1: np.ndarray, pattern2: np.ndarray) -> np.ndarray: | |
p1 = np.asarray(pattern1) | |
p2 = np.asarray(pattern2) | |
# convert to 2D arrays | |
if p1.ndim == 1: | |
p1 = safe_reshape_to_square_2d(p1) | |
if p2.ndim == 1: | |
p2 = safe_reshape_to_square_2d(p2) | |
# make same shape by cropping or padding | |
h = max(p1.shape[0], p2.shape[0]) | |
w = max(p1.shape[1], p2.shape[1]) | |
def to_shape(x, h, w): | |
out = np.zeros((h, w), dtype=np.complex128) | |
hh = min(h, x.shape[0]) | |
ww = min(w, x.shape[1]) | |
out[:hh, :ww] = x[:hh, :ww] | |
return out | |
p1s = to_shape(p1, h, w) | |
p2s = to_shape(p2, h, w) | |
fft1 = np.fft.fft2(p1s) | |
fft2 = np.fft.fft2(p2s) | |
correlation_fft = fft1 * np.conj(fft2) | |
correlation = np.fft.ifft2(correlation_fft) | |
return correlation | |
class EvolutionaryOptimizer: | |
def __init__(self, config: NebulaConfig): | |
self.config = config | |
self.generation = 0 | |
self.best_fitness = -np.inf | |
self.fitness_history: List[float] = [] | |
if DEAP_AVAILABLE: | |
self._setup_deap() | |
def _setup_deap(self): | |
creator.create("FitnessMax", base.Fitness, weights=(1.0,)) | |
creator.create("Individual", list, fitness=creator.FitnessMax) | |
self.toolbox = base.Toolbox() | |
self.toolbox.register("attr_float", np.random.normal, 0, 1) | |
self.toolbox.register("individual", tools.initRepeat, creator.Individual, self.toolbox.attr_float, n=100) | |
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual) | |
self.toolbox.register("evaluate", self._evaluate_individual) | |
self.toolbox.register("mate", tools.cxBlend, alpha=0.5) | |
self.toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=self.config.mutation_rate) | |
self.toolbox.register("select", tools.selTournament, tournsize=3) | |
def _evaluate_individual(self, individual: List[float]) -> Tuple[float]: | |
try: | |
params = self._genes_to_params(individual) | |
fitness = self._simulate_network_performance(params) | |
return (fitness,) | |
except Exception as e: | |
logger.warning(f"Evaluation failed: {e}") | |
return (-np.inf,) | |
def _genes_to_params(self, genes: List[float]) -> Dict[str, Any]: | |
params: Dict[str, Any] = {} | |
params['learning_rate'] = max(0.0001, abs(genes[0]) * 0.1) | |
params['neuron_density'] = max(0.1, abs(genes[1])) | |
params['connection_strength'] = float(genes[2]) | |
params['optical_coherence'] = float(max(0, min(1, genes[3]))) | |
params['quantum_entanglement'] = float(max(0, min(1, genes[4]))) | |
params['hologram_resolution'] = int(abs(genes[5]) * 100) + 32 | |
params['reference_beam_angle'] = float(genes[6]) * np.pi | |
params['interference_threshold'] = float(max(0, abs(genes[7]))) | |
params['rays_per_sample'] = int(abs(genes[8]) * 1000) + 100 | |
params['max_bounces'] = int(abs(genes[9]) * 10) + 1 | |
params['photon_energy'] = max(0.1, abs(genes[10]) * 10) | |
return params | |
def _simulate_network_performance(self, params: Dict[str, Any]) -> float: | |
base_performance = 0.5 | |
if 0.001 <= params['learning_rate'] <= 0.01: | |
base_performance += 0.1 | |
if 0.5 <= params['neuron_density'] <= 2.0: | |
base_performance += 0.1 | |
if params['optical_coherence'] > 0.8: | |
base_performance += 0.15 | |
if params['quantum_entanglement'] > 0.6: | |
base_performance += 0.1 | |
if params['hologram_resolution'] > 512: | |
base_performance -= 0.05 | |
if params['rays_per_sample'] > 5000: | |
base_performance -= 0.05 | |
noise = np.random.normal(0, 0.02) | |
return max(0, base_performance + noise) | |
def evolve_architecture(self, generations: int = None) -> Dict[str, Any]: | |
if not DEAP_AVAILABLE: | |
logger.warning("DEAP not available, returning default parameters") | |
return self._get_default_params() | |
if generations is None: | |
generations = self.config.generations | |
population = self.toolbox.population(n=self.config.population_size) | |
stats = tools.Statistics(lambda ind: ind.fitness.values) | |
stats.register("avg", np.mean) | |
stats.register("std", np.std) | |
stats.register("min", np.min) | |
stats.register("max", np.max) | |
logger.info(f"Starting evolutionary optimization for {generations} generations") | |
population, logbook = algorithms.eaSimple( | |
population, self.toolbox, | |
cxpb=self.config.crossover_rate, | |
mutpb=self.config.mutation_rate, | |
ngen=generations, | |
stats=stats, | |
verbose=True | |
) | |
best_individual = tools.selBest(population, 1)[0] | |
best_params = self._genes_to_params(best_individual) | |
self.best_fitness = best_individual.fitness.values[0] | |
logger.info(f"Evolution completed. Best fitness: {self.best_fitness}") | |
return best_params | |
def _get_default_params(self) -> Dict[str, Any]: | |
return { | |
'learning_rate': 0.001, | |
'neuron_density': 1.0, | |
'connection_strength': 0.5, | |
'optical_coherence': 0.9, | |
'quantum_entanglement': 0.7, | |
'hologram_resolution': 256, | |
'reference_beam_angle': np.pi / 4, | |
'interference_threshold': 0.1, | |
'rays_per_sample': 1000, | |
'max_bounces': 5, | |
'photon_energy': 1.0 | |
} | |
class P2PNetworkManager: | |
def __init__(self, config: NebulaConfig): | |
self.config = config | |
self.node_id = str(uuid.uuid4()) | |
self.peers: Dict[str, Any] = {} | |
self.knowledge_cache: Dict[str, Any] = {} | |
self.server_socket = None | |
self.running = False | |
async def start_network(self): | |
self.running = True | |
start_server = websockets.serve(self.handle_connection, 'localhost', self.config.p2p_port) | |
logger.info(f"P2P node {self.node_id} starting on port {self.config.p2p_port}") | |
await asyncio.gather(start_server, self.discovery_loop(), self.sync_loop()) | |
async def handle_connection(self, websocket, path): | |
peer_id = None | |
try: | |
async for message in websocket: | |
data = json.loads(message) | |
if data.get('type') == 'handshake': | |
peer_id = data.get('node_id') | |
self.peers[peer_id] = {'websocket': websocket, 'last_seen': time.time(), 'knowledge_hash': data.get('knowledge_hash', ''), 'capabilities': data.get('capabilities', [])} | |
response = {'type': 'handshake_response', 'node_id': self.node_id, 'knowledge_hash': self._compute_knowledge_hash(), 'capabilities': ['holographic_memory', 'quantum_processing', 'raytracing']} | |
await websocket.send(json.dumps(response)) | |
elif data.get('type') == 'knowledge_request': | |
await self.handle_knowledge_request(websocket, data) | |
elif data.get('type') == 'knowledge_share': | |
await self.handle_knowledge_share(data) | |
elif data.get('type') == 'computation_request': | |
await self.handle_computation_request(websocket, data) | |
except websockets.exceptions.ConnectionClosed: | |
if peer_id and peer_id in self.peers: | |
del self.peers[peer_id] | |
logger.info(f"Peer {peer_id} disconnected") | |
except Exception as e: | |
logger.error(f"Error handling P2P connection: {e}") | |
async def discovery_loop(self): | |
while self.running: | |
try: | |
if len(self.peers) < self.config.max_peers: | |
await self.discover_peers() | |
current_time = time.time() | |
disconnected = [pid for pid, p in self.peers.items() if current_time - p['last_seen'] > 60] | |
for pid in disconnected: | |
del self.peers[pid] | |
logger.info(f"Removed inactive peer: {pid}") | |
await asyncio.sleep(30) | |
except Exception as e: | |
logger.error(f"Error in discovery loop: {e}") | |
await asyncio.sleep(10) | |
async def sync_loop(self): | |
while self.running: | |
try: | |
await self.sync_knowledge() | |
await asyncio.sleep(self.config.knowledge_sync_interval) | |
except Exception as e: | |
logger.error(f"Error in sync loop: {e}") | |
await asyncio.sleep(5) | |
async def discover_peers(self): | |
base_port = self.config.p2p_port | |
for offset in range(1, 10): | |
if len(self.peers) >= self.config.max_peers: | |
break | |
port = base_port + offset | |
if port == self.config.p2p_port: | |
continue | |
uri = f"ws://localhost:{port}" | |
try: | |
websocket = await asyncio.wait_for(websockets.connect(uri), timeout=3) | |
handshake = {'type': 'handshake', 'node_id': self.node_id, 'knowledge_hash': self._compute_knowledge_hash(), 'capabilities': ['holographic_memory', 'quantum_processing', 'raytracing']} | |
await websocket.send(json.dumps(handshake)) | |
response = await asyncio.wait_for(websocket.recv(), timeout=3) | |
data = json.loads(response) | |
if data.get('type') == 'handshake_response': | |
pid = data.get('node_id') | |
self.peers[pid] = {'websocket': websocket, 'last_seen': time.time(), 'knowledge_hash': data.get('knowledge_hash', ''), 'capabilities': data.get('capabilities', [])} | |
logger.info(f"Connected to peer: {pid}") | |
except Exception: | |
continue | |
async def sync_knowledge(self): | |
if not self.peers: | |
return | |
my_hash = self._compute_knowledge_hash() | |
for pid, peer in list(self.peers.items()): | |
try: | |
if peer.get('knowledge_hash') != my_hash: | |
request = {'type': 'knowledge_request', 'requesting_node': self.node_id, 'knowledge_hash': my_hash} | |
await peer['websocket'].send(json.dumps(request)) | |
peer['last_seen'] = time.time() | |
except websockets.exceptions.ConnectionClosed: | |
del self.peers[pid] | |
except Exception as e: | |
logger.warning(f"Failed to sync with peer {pid}: {e}") | |
async def handle_knowledge_request(self, websocket, data): | |
requesting_node = data.get('requesting_node') | |
their_hash = data.get('knowledge_hash') | |
my_hash = self._compute_knowledge_hash() | |
if their_hash != my_hash: | |
knowledge_data = {'type': 'knowledge_share', 'from_node': self.node_id, 'knowledge_hash': my_hash, 'knowledge': self._serialize_knowledge(), 'timestamp': time.time()} | |
await websocket.send(json.dumps(knowledge_data)) | |
logger.debug(f"Shared knowledge with {requesting_node}") | |
async def handle_knowledge_share(self, data): | |
from_node = data.get('from_node') | |
knowledge = data.get('knowledge') | |
timestamp = data.get('timestamp') | |
self._integrate_knowledge(knowledge, from_node, timestamp) | |
logger.debug(f"Integrated knowledge from {from_node}") | |
async def handle_computation_request(self, websocket, data): | |
request_id = data.get('request_id') | |
computation_type = data.get('computation_type') | |
params = data.get('parameters', {}) | |
try: | |
result = await self._execute_computation(computation_type, params) | |
response = {'type': 'computation_result', 'request_id': request_id, 'result': result, 'node_id': self.node_id} | |
await websocket.send(json.dumps(response)) | |
except Exception as e: | |
error_response = {'type': 'computation_error', 'request_id': request_id, 'error': str(e), 'node_id': self.node_id} | |
await websocket.send(json.dumps(error_response)) | |
def _compute_knowledge_hash(self) -> str: | |
try: | |
knowledge_str = json.dumps(self.knowledge_cache, sort_keys=True) | |
except Exception: | |
knowledge_str = str(self.knowledge_cache) | |
return hashlib.sha256(knowledge_str.encode()).hexdigest() | |
def _serialize_knowledge(self) -> Dict[str, Any]: | |
return {'patterns': list(self.knowledge_cache.keys()), 'metadata': {'node_id': self.node_id, 'timestamp': time.time(), 'version': '1.0'}} | |
def _integrate_knowledge(self, knowledge: Dict[str, Any], from_node: str, timestamp: float): | |
if not isinstance(knowledge, dict): | |
return | |
for pattern in knowledge.get('patterns', []): | |
if pattern not in self.knowledge_cache: | |
self.knowledge_cache[pattern] = {'source': from_node, 'received_at': timestamp, 'confidence': 0.5} | |
async def _execute_computation(self, computation_type: str, parameters: Dict[str, Any]) -> Any: | |
if computation_type == 'holographic_reconstruction': | |
pattern = parameters.get('pattern', np.random.rand(64, 64)) | |
return np.fft.ifft2(np.fft.fft2(pattern)).tolist() | |
elif computation_type == 'quantum_simulation': | |
return [0.5, 0.3, 0.2, 0.1] | |
elif computation_type == 'raytracing_sample': | |
return {'intensity': 0.8, 'color': [1.0, 0.9, 0.8]} | |
else: | |
raise ValueError(f"Unknown computation type: {computation_type}") | |
class BenchmarkManager: | |
def __init__(self, config: NebulaConfig): | |
self.config = config | |
self.results: Dict[str, float] = {} | |
self.baseline_scores = {'mmlu': 0.25, 'gsm8k': 0.0} | |
def load_datasets(self) -> Dict[str, Any]: | |
datasets: Dict[str, Any] = {} | |
if 'mmlu' in self.config.benchmark_datasets: | |
datasets['mmlu'] = self._load_mmlu_dataset() | |
if 'gsm8k' in self.config.benchmark_datasets: | |
datasets['gsm8k'] = self._load_gsm8k_dataset() | |
return datasets | |
def _load_mmlu_dataset(self) -> Dict[str, Any]: | |
logger.info("Loading MMLU dataset (simulated)") | |
samples = [] | |
subjects = ['mathematics', 'physics', 'computer_science', 'chemistry', 'biology'] | |
for i in range(100): | |
subject = np.random.choice(subjects) | |
samples.append({'question': f"Sample MMLU question {i} in {subject}", 'choices': ["Option A", "Option B", "Option C", "Option D"], 'correct_answer': int(np.random.randint(0, 4)), 'subject': subject}) | |
return {'samples': samples, 'metadata': {'total_samples': len(samples), 'subjects': subjects, 'format': 'multiple_choice'}} | |
def _load_gsm8k_dataset(self) -> Dict[str, Any]: | |
logger.info("Loading GSM8K dataset (simulated)") | |
samples = [] | |
for i in range(50): | |
samples.append({'question': f"Math word problem {i}: If John has {np.random.randint(1,100)} apples and gives away {np.random.randint(1,50)}, how many does he have left?", 'answer': f"{np.random.randint(1,50)}", 'solution_steps': ["Step 1: Identify initial amount", "Step 2: Identify amount given away", "Step 3: Subtract to find remainder"]}) | |
return {'samples': samples, 'metadata': {'total_samples': len(samples), 'format': 'math_word_problems'}} | |
def evaluate_model(self, model, datasets: Dict[str, Any]) -> Dict[str, float]: | |
results: Dict[str, float] = {} | |
for dataset_name, dataset in datasets.items(): | |
logger.info(f"Evaluating on {dataset_name}") | |
if dataset_name == 'mmlu': | |
score = self._evaluate_mmlu(model, dataset) | |
elif dataset_name == 'gsm8k': | |
score = self._evaluate_gsm8k(model, dataset) | |
else: | |
logger.warning(f"Unknown dataset: {dataset_name}") | |
continue | |
results[dataset_name] = score | |
baseline = self.baseline_scores.get(dataset_name, 0.0) | |
improvement = ((score - baseline) / baseline * 100) if baseline > 0 else 0 | |
logger.info(f"{dataset_name} score: {score:.4f} (+{improvement:.1f}% vs baseline)") | |
self.results.update(results) | |
return results | |
def _evaluate_mmlu(self, model, dataset: Dict[str, Any]) -> float: | |
samples = dataset.get('samples', []) | |
correct = 0 | |
for sample in samples: | |
try: | |
prediction = self._simulate_mmlu_prediction(model, sample) | |
if prediction == sample.get('correct_answer'): | |
correct += 1 | |
except Exception as e: | |
logger.warning(f"Error evaluating MMLU sample: {e}") | |
return correct / len(samples) if samples else 0.0 | |
def _evaluate_gsm8k(self, model, dataset: Dict[str, Any]) -> float: | |
samples = dataset.get('samples', []) | |
correct = 0 | |
for sample in samples: | |
try: | |
prediction = self._simulate_gsm8k_prediction(model, sample) | |
if self._check_math_answer(prediction, sample.get('answer')): | |
correct += 1 | |
except Exception as e: | |
logger.warning(f"Error evaluating GSM8K sample: {e}") | |
return correct / len(samples) if samples else 0.0 | |
def _encode_text_holographically(self, text: str) -> np.ndarray: | |
text_hash = hashlib.md5(text.encode()).hexdigest() | |
numeric_hash = int(text_hash, 16) | |
np.random.seed(numeric_hash % (2 ** 32)) | |
encoding = np.random.rand(128) | |
return encoding / (np.linalg.norm(encoding) + 1e-12) | |
def _simulate_holographic_rag(self, query_encoding: np.ndarray) -> np.ndarray: | |
knowledge_base = np.random.rand(10, 128) | |
similarities = np.dot(knowledge_base, query_encoding) | |
weights = np.exp(similarities) / (np.sum(np.exp(similarities)) + 1e-12) | |
relevant_knowledge = np.dot(weights, knowledge_base) | |
return relevant_knowledge | |
def _simulate_quantum_reasoning(self, question: np.ndarray, knowledge: np.ndarray) -> np.ndarray: | |
combined = np.concatenate([question, knowledge]) | |
phase_shifts = np.random.rand(len(combined)) * 2 * np.pi | |
quantum_state = combined * np.exp(1j * phase_shifts) | |
probabilities = np.abs(quantum_state) ** 2 | |
return probabilities[: len(question)] | |
def _simulate_mmlu_prediction(self, model, sample: Dict[str, Any]) -> int: | |
question = sample.get('question', '') | |
choices = sample.get('choices', []) | |
question_encoding = self._encode_text_holographically(question) | |
relevant_knowledge = self._simulate_holographic_rag(question_encoding) | |
quantum_reasoning = self._simulate_quantum_reasoning(question_encoding, relevant_knowledge) | |
confidence_scores = [] | |
for choice in choices: | |
choice_encoding = self._encode_text_holographically(choice) | |
compatibility = float(np.dot(quantum_reasoning, choice_encoding[: len(quantum_reasoning)])) | |
confidence_scores.append(compatibility) | |
return int(np.argmax(confidence_scores)) if confidence_scores else 0 | |
def _simulate_gsm8k_prediction(self, model, sample: Dict[str, Any]) -> str: | |
question = sample.get('question', '') | |
problem_structure = self._analyze_math_problem(question) | |
reasoning_steps = self._simulate_math_reasoning(problem_structure) | |
answer = self._extract_numerical_answer(reasoning_steps) | |
return str(answer) | |
def _analyze_math_problem(self, question: str) -> Dict[str, Any]: | |
import re | |
numbers = [float(x) for x in re.findall(r'\d+(?:\.\d+)?', question)] | |
operations = [] | |
ql = question.lower() | |
if 'give' in ql or 'lose' in ql: | |
operations.append('subtract') | |
if 'get' in ql or 'buy' in ql: | |
operations.append('add') | |
if 'times' in ql or 'multiply' in ql: | |
operations.append('multiply') | |
return {'numbers': numbers, 'operations': operations, 'entities': ['apples', 'person']} | |
def _simulate_math_reasoning(self, problem: Dict[str, Any]) -> List[str]: | |
numbers = problem.get('numbers', []) | |
operations = problem.get('operations', []) | |
steps = [f"Initial amount: {numbers[0] if numbers else 0}", f"Operation: {operations[0] if operations else 'unknown'}", f"Second amount: {numbers[1] if len(numbers) > 1 else 0}"] | |
return steps | |
def _extract_numerical_answer(self, steps: List[str]) -> float: | |
import re | |
numbers = [] | |
for step in steps: | |
found = re.findall(r'\d+(?:\.\d+)?', step) | |
numbers.extend([float(x) for x in found]) | |
if len(numbers) >= 2: | |
return max(0, numbers[0] - numbers[1]) | |
elif len(numbers) == 1: | |
return numbers[0] | |
else: | |
return 0 | |
def _check_math_answer(self, predicted: str, correct: str) -> bool: | |
try: | |
return abs(float(predicted) - float(correct)) < 0.001 | |
except Exception: | |
return str(predicted).strip() == str(correct).strip() | |
def generate_report(self) -> str: | |
if not self.results: | |
return "No benchmark results available" | |
report = ["=" * 50, "NEBULA-X BENCHMARK REPORT", "=" * 50, f"Timestamp: {datetime.now().isoformat()}", ""] | |
total_improvement = 0 | |
valid_scores = 0 | |
for dataset, score in self.results.items(): | |
baseline = self.baseline_scores.get(dataset, 0) | |
improvement = ((score - baseline) / baseline * 100) if baseline > 0 else 0 | |
total_improvement += improvement | |
valid_scores += 1 | |
report.extend([f"Dataset: {dataset.upper()}", f" Score: {score:.4f}", f" Baseline: {baseline:.4f}", f" Improvement: +{improvement:.1f}%", ""]) | |
if valid_scores > 0: | |
avg_improvement = total_improvement / valid_scores | |
report.extend([f"OVERALL PERFORMANCE:", f" Average Improvement: +{avg_improvement:.1f}%", f" Datasets Evaluated: {valid_scores}", ""]) | |
report.extend(["TECHNOLOGY HIGHLIGHTS:", " β Holographic Memory Processing", " β Quantum-Enhanced Reasoning", " β Optical Neural Networks", " β P2P Knowledge Distribution", " β Evolutionary Architecture Optimization", "=" * 50]) | |
return "\n".join(report) | |
class NebulaXModel: | |
def __init__(self, config: NebulaConfig): | |
self.config = config | |
self.neurons: List[QuantumNeuron] = [] | |
self.raytracing_engine = RaytracingEngine(config) | |
self.holographic_memory = HolographicMemory(config) | |
self.evolutionary_optimizer = EvolutionaryOptimizer(config) | |
self.p2p_manager = P2PNetworkManager(config) | |
self.benchmark_manager = BenchmarkManager(config) | |
self.training_step = 0 | |
self.performance_history: List[float] = [] | |
self.nebula_space = np.zeros(config.nebula_space_size) | |
self._initialize_neural_network() | |
logger.info("NEBULA-X Model initialized successfully") | |
def _initialize_neural_network(self): | |
logger.info("Initializing quantum neural network...") | |
n = max(1, min(self.config.initial_neurons, 20000)) # safety cap | |
for i in range(n): | |
neuron_id = f"neuron_{i:06d}" | |
neuron = QuantumNeuron(neuron_id, self.config) | |
self.neurons.append(neuron) | |
self._create_initial_connections() | |
logger.info(f"Created {len(self.neurons)} quantum neurons") | |
def _create_initial_connections(self): | |
num_neurons = len(self.neurons) | |
if num_neurons <= 1: | |
return | |
for i, neuron in enumerate(self.neurons): | |
# connect to a subset to avoid O(n^2) explosion | |
sample_count = min(50, num_neurons - 1) | |
indices = np.random.choice([j for j in range(num_neurons) if j != i], sample_count, replace=False) | |
for j in indices: | |
other = self.neurons[j] | |
distance = np.linalg.norm(neuron.position - other.position) | |
connection_prob = float(np.exp(-distance / 100)) | |
if np.random.rand() < connection_prob: | |
strength = float(np.random.rand()) | |
neuron.connections[other.id] = {'strength': strength, 'type': 'excitatory' if strength > 0.5 else 'inhibitory'} | |
def forward(self, input_data: np.ndarray) -> np.ndarray: | |
holographic_input = self._encode_input_holographically(input_data) | |
self._distribute_input_to_neurons(holographic_input) | |
optical_signals = self.raytracing_engine.trace_neural_rays(self.neurons, input_data) | |
quantum_outputs = [] | |
for i, neuron in enumerate(self.neurons): | |
try: | |
if i < len(optical_signals): | |
neuron_input = optical_signals[i] | |
else: | |
neuron_input = np.zeros(self.config.qubits_per_neuron) | |
quantum_output = neuron.quantum_process(neuron_input) | |
quantum_outputs.append(np.asarray(quantum_output)) | |
except Exception as e: | |
logger.debug(f"Quantum processing failed for neuron {neuron.id}: {e}") | |
quantum_outputs.append(np.zeros(self.config.qubits_per_neuron)) | |
self._apply_gravitational_dynamics() | |
rag_results = self.holographic_memory.holographic_rag_search(holographic_input, top_k=5) | |
final_output = self._combine_outputs(quantum_outputs, rag_results) | |
return final_output | |
def _encode_input_holographically(self, input_data: np.ndarray) -> np.ndarray: | |
arr = np.asarray(input_data) | |
arr = arr / (np.max(np.abs(arr)) + 1e-12) | |
reference_beam = np.exp(1j * np.pi * np.arange(arr.size)).astype(np.complex128) | |
object_beam = arr.astype(np.complex128) | |
hologram = np.abs(object_beam + reference_beam) ** 2 | |
return np.fft.fft(hologram) | |
def _distribute_input_to_neurons(self, holographic_input: np.ndarray): | |
input_size = holographic_input.size | |
num_neurons = len(self.neurons) | |
if num_neurons == 0: | |
return | |
chunk_size = max(1, input_size // num_neurons) | |
for i, neuron in enumerate(self.neurons): | |
start = i * chunk_size | |
end = min((i + 1) * chunk_size, input_size) | |
if start < input_size: | |
neuron_input = holographic_input[start:end] | |
try: | |
neuron.holographic_encode(np.real(neuron_input)) | |
except Exception as e: | |
logger.debug(f"Failed encoding to neuron {neuron.id}: {e}") | |
input_magnitude = np.abs(neuron_input).mean() if neuron_input.size else 0 | |
neuron.luminosity = min(3.0, neuron.luminosity + float(input_magnitude) * 0.1) | |
def _apply_gravitational_dynamics(self): | |
dt = 0.01 | |
for i, neuron in enumerate(self.neurons): | |
total_force = np.zeros(3) | |
for j, other in enumerate(self.neurons): | |
if i == j: | |
continue | |
try: | |
force = neuron.gravitational_force(other) | |
distance = np.linalg.norm(other.position - neuron.position) | |
if distance > self.config.repulsion_threshold: | |
total_force += force | |
else: | |
total_force += (neuron.position - other.position) * 0.1 | |
except Exception: | |
continue | |
neuron.update_position(dt, total_force) | |
def _combine_outputs(self, quantum_outputs: List[np.ndarray], rag_results: List[Tuple[str, float, Optional[np.ndarray]]]) -> np.ndarray: | |
if quantum_outputs: | |
quantum_stack = np.vstack([np.resize(q, self.config.qubits_per_neuron) for q in quantum_outputs]) | |
quantum_avg = np.mean(quantum_stack, axis=0) | |
else: | |
quantum_avg = np.zeros(self.config.qubits_per_neuron) | |
rag_contribution = np.zeros_like(quantum_avg, dtype=float) | |
for key, score, pattern in rag_results: | |
if pattern is None: | |
continue | |
pattern_flat = np.ravel(pattern) | |
L = min(len(pattern_flat), len(rag_contribution)) | |
rag_contribution[:L] += np.real(pattern_flat[:L]) * float(score) | |
if np.max(np.abs(rag_contribution)) > 0: | |
rag_contribution /= (np.max(np.abs(rag_contribution)) + 1e-12) | |
alpha, beta = 0.7, 0.3 | |
final_output = alpha * np.real(quantum_avg) + beta * rag_contribution | |
return final_output | |
def train_step(self, input_data: np.ndarray, target: np.ndarray) -> float: | |
output = self.forward(input_data) | |
target_arr = np.asarray(target) | |
min_len = min(output.size, target_arr.size) | |
if min_len == 0: | |
return float(np.nan) | |
loss = float(np.mean((output[:min_len] - target_arr[:min_len]) ** 2)) | |
pattern_key = f"pattern_{self.training_step}" | |
try: | |
self.holographic_memory.store_pattern(pattern_key, input_data) | |
except Exception as e: | |
logger.debug(f"Failed to store pattern during training: {e}") | |
self._apply_evolutionary_pressure(loss) | |
self.training_step += 1 | |
self.performance_history.append(loss) | |
if self.training_step % 100 == 0: | |
try: | |
self._evolutionary_optimization_step() | |
except Exception as e: | |
logger.warning(f"Evolution step failed: {e}") | |
return loss | |
def _apply_evolutionary_pressure(self, loss: float): | |
if not self.neurons: | |
return | |
performance_threshold = np.median([n.luminosity for n in self.neurons]) | |
for n in self.neurons: | |
if n.luminosity > performance_threshold: | |
n.luminosity *= 1.01 | |
n.mass *= 1.001 | |
else: | |
n.luminosity *= 0.99 | |
n.mass *= 0.999 | |
n.luminosity = np.clip(n.luminosity, 0.1, 3.0) | |
n.mass = np.clip(n.mass, 0.5, 2.0) | |
def _evolutionary_optimization_step(self): | |
logger.info("Executing evolutionary optimization step") | |
try: | |
optimized_params = self.evolutionary_optimizer.evolve_architecture(generations=10) | |
self._apply_optimized_parameters(optimized_params) | |
except Exception as e: | |
logger.warning(f"Evolutionary optimization failed: {e}") | |
def _apply_optimized_parameters(self, params: Dict[str, Any]): | |
try: | |
for neuron in self.neurons: | |
neuron.optical_properties['reflectivity'] *= float(params.get('optical_coherence', 1.0)) | |
neuron.optical_properties['phase_shift'] += float(params.get('reference_beam_angle', 0)) * 0.1 | |
if 'rays_per_sample' in params: | |
self.config.rays_per_neuron = min(10000, max(100, int(params['rays_per_sample']))) | |
except Exception as e: | |
logger.debug(f"Failed to apply optimized parameters: {e}") | |
async def start_p2p_network(self): | |
try: | |
await self.p2p_manager.start_network() | |
except Exception as e: | |
logger.error(f"Failed to start P2P network: {e}") | |
def evaluate_benchmarks(self) -> Dict[str, float]: | |
logger.info("Starting benchmark evaluation") | |
datasets = self.benchmark_manager.load_datasets() | |
results = self.benchmark_manager.evaluate_model(self, datasets) | |
report = self.benchmark_manager.generate_report() | |
logger.info(f"Benchmark Report:\n{report}") | |
return results | |
def save_model(self, filepath: str): | |
model_data = {'config': self.config.__dict__, 'neurons': [{'id': n.id, 'position': n.position.tolist(), 'luminosity': n.luminosity, 'mass': n.mass, 'optical_properties': n.optical_properties, 'connections': n.connections} for n in self.neurons], 'training_step': self.training_step, 'performance_history': self.performance_history, 'holographic_memory_keys': list(self.holographic_memory.memory_planes.keys()), 'timestamp': datetime.now().isoformat()} | |
with open(filepath, 'wb') as f: | |
pickle.dump(model_data, f) | |
logger.info(f"Model saved to {filepath}") | |
def load_model(self, filepath: str): | |
with open(filepath, 'rb') as f: | |
model_data = pickle.load(f) | |
config_dict = model_data.get('config', {}) | |
self.config = NebulaConfig(**config_dict) | |
self.neurons = [] | |
for neuron_data in model_data.get('neurons', []): | |
neuron = QuantumNeuron(neuron_data.get('id', str(uuid.uuid4())), self.config) | |
neuron.position = np.array(neuron_data.get('position', neuron.position)) | |
neuron.luminosity = neuron_data.get('luminosity', neuron.luminosity) | |
neuron.mass = neuron_data.get('mass', neuron.mass) | |
neuron.optical_properties = neuron_data.get('optical_properties', neuron.optical_properties) | |
neuron.connections = neuron_data.get('connections', {}) | |
self.neurons.append(neuron) | |
self.training_step = model_data.get('training_step', 0) | |
self.performance_history = model_data.get('performance_history', []) | |
logger.info(f"Model loaded from {filepath}") | |
def create_demo_model() -> NebulaXModel: | |
config = NebulaConfig(initial_neurons=1000, rays_per_neuron=500, generations=50, max_peers=10) | |
model = NebulaXModel(config) | |
logger.info("Demo model created successfully") | |
return model | |
def run_complete_demo(): | |
print("\n" + "=" * 60) | |
print("π NEBULA-X: Enhanced Unified Holographic Neural Network") | |
print(" Francisco Angulo de Lafuente - Agnuxo") | |
print(" Winner: NVIDIA LlamaIndex Developer Contest 2024") | |
print("=" * 60) | |
try: | |
print("\nπ§ Initializing NEBULA-X model...") | |
model = create_demo_model() | |
print("\nπ Generating test data...") | |
input_data = np.random.rand(128) | |
target_data = np.random.rand(4) | |
print("\nπ― Training model...") | |
for epoch in range(10): | |
loss = model.train_step(input_data, target_data) | |
if epoch % 2 == 0: | |
print(f" Epoch {epoch}: Loss = {loss:.6f}") | |
print("\nπ Running benchmark evaluation...") | |
benchmark_results = model.evaluate_benchmarks() | |
print("\nπ BENCHMARK RESULTS:") | |
for dataset, score in benchmark_results.items(): | |
print(f" {dataset.upper()}: {score:.4f}") | |
print("\n㪠Advanced Features Demo:") | |
test_pattern = np.random.rand(64, 64) | |
model.holographic_memory.store_pattern("demo_pattern", test_pattern) | |
retrieved = model.holographic_memory.retrieve_pattern("demo_pattern") | |
print(f" β Holographic Memory: Pattern stored and retrieved") | |
rag_results = model.holographic_memory.holographic_rag_search(np.random.rand(64), top_k=3) | |
print(f" β Holographic RAG: Found {len(rag_results)} relevant patterns") | |
optical_output = model.raytracing_engine.trace_neural_rays(model.neurons[:10], input_data) | |
print(f" β Optical Raytracing: Traced {len(optical_output)} rays") | |
print(" 𧬠Running evolutionary optimization...") | |
try: | |
optimized_params = model.evolutionary_optimizer.evolve_architecture(generations=5) | |
print(f" β Evolution: Optimized {len(optimized_params)} parameters") | |
except Exception as e: | |
print(f" β οΈ Evolution failed: {e}") | |
print("\nπΎ Saving model...") | |
model.save_model("nebula_x_demo.pkl") | |
print("\nπ FINAL STATISTICS:") | |
print(f" Neurons: {len(model.neurons)}") | |
print(f" Training Steps: {model.training_step}") | |
print(f" Holographic Patterns: {len(model.holographic_memory.memory_planes)}") | |
print(f" Performance History: {len(model.performance_history)} points") | |
print("\nπ IMPLEMENTED TECHNOLOGIES:") | |
tech_status = [("Holographic Neural Networks", "β Active"), ("Quantum Memory (4 qubits/neuron)", "β Active"), ("GPU-Accelerated Raytracing", "β Active" if PYCUDA_AVAILABLE else "β οΈ Simulated"), ("P2P Knowledge Distribution", "β Ready"), ("Evolutionary Optimization", "β Active" if DEAP_AVAILABLE else "β οΈ Simulated"), ("Holographic RAG System", "β Active"), ("Gravitational Dynamics", "β Active"), ("Benchmark Integration", "β Active")] | |
for name, status in tech_status: | |
print(f" {name}: {status}") | |
except Exception as e: | |
logger.error(f"Demo failed: {e}") | |
if __name__ == '__main__': | |
run_complete_demo() | |