Create train_model.py
Browse files- train_model.py +27 -0
train_model.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# train_model.py
|
2 |
+
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
|
3 |
+
from datasets import load_from_disk
|
4 |
+
|
5 |
+
tokenized_dataset = load_from_disk("tokenized_dataset")
|
6 |
+
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
8 |
+
|
9 |
+
training_args = TrainingArguments(
|
10 |
+
output_dir="./checkpoints",
|
11 |
+
num_train_epochs=1,
|
12 |
+
per_device_train_batch_size=1,
|
13 |
+
gradient_accumulation_steps=8,
|
14 |
+
evaluation_strategy="no",
|
15 |
+
save_strategy="epoch",
|
16 |
+
fp16=True, # if using GPU
|
17 |
+
logging_steps=50,
|
18 |
+
)
|
19 |
+
|
20 |
+
trainer = Trainer(
|
21 |
+
model=model,
|
22 |
+
args=training_args,
|
23 |
+
train_dataset=tokenized_dataset,
|
24 |
+
)
|
25 |
+
|
26 |
+
trainer.train()
|
27 |
+
model.save_pretrained("./my_ai_assistant", safe_serialization=True) # saves .safetensors
|