Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,38 @@
|
|
1 |
import threading
|
2 |
-
import time
|
3 |
from datasets import load_dataset
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
|
7 |
-
# Global
|
8 |
dataset_loaded = False
|
9 |
-
|
|
|
10 |
|
11 |
def load_dataset_in_background():
|
12 |
-
global dataset_loaded,
|
13 |
try:
|
14 |
-
|
15 |
dataset = load_dataset("HuggingFaceFW/fineweb", split="train")
|
16 |
-
# Save to CSV
|
17 |
dataset.to_csv("data.csv")
|
18 |
-
|
19 |
-
|
|
|
20 |
except Exception as e:
|
21 |
-
|
|
|
|
|
22 |
|
23 |
# Start dataset loading in background thread
|
24 |
threading.Thread(target=load_dataset_in_background, daemon=True).start()
|
25 |
|
26 |
-
# Load GPT-2
|
27 |
model_name = "gpt2"
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
30 |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=-1)
|
31 |
|
|
|
32 |
def generate_response(prompt):
|
33 |
responses = generator(
|
34 |
prompt,
|
@@ -41,26 +45,25 @@ def generate_response(prompt):
|
|
41 |
)
|
42 |
return responses[0]['generated_text'].strip()
|
43 |
|
44 |
-
# Gradio
|
45 |
with gr.Blocks() as demo:
|
46 |
-
gr.Markdown("## AI Assistant with Background Dataset Loading")
|
47 |
-
|
48 |
|
49 |
-
def
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
refresh_btn.click(get_dataset_status, outputs=dataset_status)
|
55 |
|
56 |
gr.Markdown("### Chat with the AI")
|
57 |
prompt_input = gr.Textbox(label="Your prompt", placeholder="Ask me anything...")
|
58 |
response_output = gr.Textbox(label="AI Response", lines=10)
|
59 |
|
60 |
-
def
|
61 |
-
# You can implement logic to use dataset info here if needed
|
62 |
return generate_response(prompt)
|
63 |
|
64 |
-
gr.Button("Ask").click(
|
65 |
|
66 |
demo.launch()
|
|
|
1 |
import threading
|
|
|
2 |
from datasets import load_dataset
|
3 |
import gradio as gr
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
5 |
|
6 |
+
# Global variables for dataset status
|
7 |
dataset_loaded = False
|
8 |
+
dataset_status_message = "Dataset is still loading..."
|
9 |
+
dataset_lock = threading.Lock()
|
10 |
|
11 |
def load_dataset_in_background():
|
12 |
+
global dataset_loaded, dataset_status_message
|
13 |
try:
|
14 |
+
# Load dataset from Hugging Face
|
15 |
dataset = load_dataset("HuggingFaceFW/fineweb", split="train")
|
16 |
+
# Save to CSV for later use
|
17 |
dataset.to_csv("data.csv")
|
18 |
+
with dataset_lock:
|
19 |
+
dataset_loaded = True
|
20 |
+
dataset_status_message = "Dataset loaded successfully!"
|
21 |
except Exception as e:
|
22 |
+
with dataset_lock:
|
23 |
+
dataset_loaded = False
|
24 |
+
dataset_status_message = f"Error loading dataset: {e}"
|
25 |
|
26 |
# Start dataset loading in background thread
|
27 |
threading.Thread(target=load_dataset_in_background, daemon=True).start()
|
28 |
|
29 |
+
# Load GPT-2 for inference
|
30 |
model_name = "gpt2"
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
33 |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=-1)
|
34 |
|
35 |
+
# Function to generate response
|
36 |
def generate_response(prompt):
|
37 |
responses = generator(
|
38 |
prompt,
|
|
|
45 |
)
|
46 |
return responses[0]['generated_text'].strip()
|
47 |
|
48 |
+
# Gradio interface
|
49 |
with gr.Blocks() as demo:
|
50 |
+
gr.Markdown("## GPT-2 AI Assistant with Background Dataset Loading")
|
51 |
+
status_box = gr.Textbox(value=dataset_status_message, label="Dataset Loading Status", interactive=False, lines=2)
|
52 |
|
53 |
+
def refresh_status():
|
54 |
+
with dataset_lock:
|
55 |
+
return dataset_status_message
|
56 |
|
57 |
+
refresh_button = gr.Button("Check Dataset Status")
|
58 |
+
refresh_button.click(refresh_status, outputs=status_box)
|
|
|
59 |
|
60 |
gr.Markdown("### Chat with the AI")
|
61 |
prompt_input = gr.Textbox(label="Your prompt", placeholder="Ask me anything...")
|
62 |
response_output = gr.Textbox(label="AI Response", lines=10)
|
63 |
|
64 |
+
def chat(prompt):
|
|
|
65 |
return generate_response(prompt)
|
66 |
|
67 |
+
gr.Button("Ask").click(chat, inputs=prompt_input, outputs=response_output)
|
68 |
|
69 |
demo.launch()
|