Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from diffusers import DiffusionPipeline
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
# Load the pre-trained pipeline
|
| 8 |
+
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1")
|
| 9 |
+
|
| 10 |
+
# Define the Gradio interface
|
| 11 |
+
interface = gr.Interface(
|
| 12 |
+
fn=lambda img: generate_video(img),
|
| 13 |
+
inputs=gr.Image(type="pil"),
|
| 14 |
+
outputs=gr.Video(),
|
| 15 |
+
title="Stable Video Diffusion",
|
| 16 |
+
description="Upload an image to generate a video",
|
| 17 |
+
theme="soft"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# Define the function to generate the video
|
| 21 |
+
def generate_video(img):
|
| 22 |
+
# Convert the input image to a tensor
|
| 23 |
+
img_tensor = torch.tensor(img).unsqueeze(0) / 255.0
|
| 24 |
+
|
| 25 |
+
# Run the pipeline to generate the video
|
| 26 |
+
output = pipeline(img_tensor)
|
| 27 |
+
|
| 28 |
+
# Extract the video frames from the output
|
| 29 |
+
video_frames = output["video_frames"]
|
| 30 |
+
|
| 31 |
+
# Convert the video frames to a video
|
| 32 |
+
video = []
|
| 33 |
+
for frame in video_frames:
|
| 34 |
+
video.append(Image.fromarray(frame.detach().cpu().numpy()))
|
| 35 |
+
|
| 36 |
+
# Return the generated video
|
| 37 |
+
return video
|
| 38 |
+
|
| 39 |
+
# Launch the Gradio app
|
| 40 |
+
interface.launch()
|