AlekseyCalvin commited on
Commit
4aa1672
·
verified ·
1 Parent(s): 6c68ee5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +915 -0
app.py ADDED
@@ -0,0 +1,915 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ if os.environ.get("SPACES_ZERO_GPU") is not None:
3
+ import spaces
4
+ else:
5
+ class spaces:
6
+ @staticmethod
7
+ def GPU(func):
8
+ def wrapper(*args, **kwargs):
9
+ return func(*args, **kwargs)
10
+ return wrapper
11
+
12
+ import gradio as gr
13
+ import json
14
+ import logging
15
+ import argparse
16
+ import torch
17
+ import torchvision
18
+ from os import path
19
+ from PIL import Image
20
+ import numpy as np
21
+ import spaces
22
+ import copy
23
+ import random
24
+ import time
25
+ from torchvision import transforms
26
+ from dataclasses import dataclass
27
+
28
+ import math
29
+ from pathlib import Path
30
+ from typing import Any, Callable, Dict, List, Optional, Union
31
+ from huggingface_hub import hf_hub_download, snapshot_download
32
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image
33
+ from diffusers.models.transformers import FluxTransformer2DModel
34
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
35
+ import safetensors.torch
36
+ from safetensors.torch import load_file
37
+ import random
38
+ from tqdm import tqdm
39
+ from einops import rearrange, repeat
40
+ from torch import Tensor, nn
41
+ from pipeline import FluxWithCFGPipeline
42
+ from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
43
+ import gc
44
+ import warnings
45
+ model_path = snapshot_download(repo_id="Kijai/OpenFLUX-comfy")
46
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
47
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
48
+ os.environ["HF_HUB_CACHE"] = cache_path
49
+ os.environ["HF_HOME"] = cache_path
50
+
51
+ device = "cuda" if torch.cuda.is_available() else "cpu"
52
+
53
+ #torch.backends.cuda.matmul.allow_tf32 = True
54
+
55
+ # Load LoRAs from JSON file
56
+ with open('loras.json', 'r') as f:
57
+ loras = json.load(f)
58
+
59
+ dtype = torch.bfloat16
60
+
61
+ #clipmodel = 'norm'
62
+ #if clipmodel == "long":
63
+ # model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
64
+ # config = CLIPConfig.from_pretrained(model_id)
65
+ # maxtokens = 77
66
+ #if clipmodel == "norm":
67
+ # model_id = "zer0int/CLIP-GmP-ViT-L-14"
68
+ # config = CLIPConfig.from_pretrained(model_id)
69
+ # maxtokens = 77
70
+ #clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
71
+ #clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
72
+
73
+ #pipe.tokenizer = clip_processor.tokenizer
74
+ #pipe.text_encoder = clip_model.text_model
75
+ #pipe.tokenizer_max_length = maxtokens
76
+ #pipe.text_encoder.dtype = torch.bfloat16
77
+
78
+ class HFEmbedder(nn.Module):
79
+ def __init__(self, version: str, max_length: int, **hf_kwargs):
80
+ super().__init__()
81
+ self.is_clip = version.startswith("openai")
82
+ self.max_length = max_length
83
+ self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
84
+
85
+ if self.is_clip:
86
+ self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
87
+ self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
88
+ else:
89
+ self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
90
+ self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
91
+
92
+ self.hf_module = self.hf_module.eval().requires_grad_(False)
93
+
94
+ def forward(self, text: list[str]) -> Tensor:
95
+ batch_encoding = self.tokenizer(
96
+ text,
97
+ truncation=True,
98
+ max_length=self.max_length,
99
+ return_length=False,
100
+ return_overflowing_tokens=False,
101
+ padding="max_length",
102
+ return_tensors="pt",
103
+ )
104
+
105
+ outputs = self.hf_module(
106
+ input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
107
+ attention_mask=None,
108
+ output_hidden_states=False,
109
+ )
110
+ return outputs[self.output_key]
111
+
112
+ device = "cuda"
113
+ t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
114
+ clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
115
+ ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
116
+ # quantize(t5, weights=qfloat8)
117
+ # freeze(t5)
118
+
119
+
120
+ # ---------------- Model ----------------
121
+
122
+
123
+ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
124
+ q, k = apply_rope(q, k, pe)
125
+
126
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
127
+ # x = rearrange(x, "B H L D -> B L (H D)")
128
+ x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
129
+
130
+ return x
131
+
132
+
133
+ def rope(pos, dim, theta):
134
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
135
+ omega = 1.0 / (theta ** scale)
136
+
137
+ # out = torch.einsum("...n,d->...nd", pos, omega)
138
+ out = pos.unsqueeze(-1) * omega.unsqueeze(0)
139
+
140
+ cos_out = torch.cos(out)
141
+ sin_out = torch.sin(out)
142
+ out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
143
+
144
+ # out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
145
+ b, n, d, _ = out.shape
146
+ out = out.view(b, n, d, 2, 2)
147
+
148
+ return out.float()
149
+
150
+
151
+ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
152
+ xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
153
+ xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
154
+ xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
155
+ xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
156
+ return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
157
+
158
+
159
+ class EmbedND(nn.Module):
160
+ def __init__(self, dim: int, theta: int, axes_dim: list[int]):
161
+ super().__init__()
162
+ self.dim = dim
163
+ self.theta = theta
164
+ self.axes_dim = axes_dim
165
+
166
+ def forward(self, ids: Tensor) -> Tensor:
167
+ n_axes = ids.shape[-1]
168
+ emb = torch.cat(
169
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
170
+ dim=-3,
171
+ )
172
+
173
+ return emb.unsqueeze(1)
174
+
175
+
176
+ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
177
+ """
178
+ Create sinusoidal timestep embeddings.
179
+ :param t: a 1-D Tensor of N indices, one per batch element.
180
+ These may be fractional.
181
+ :param dim: the dimension of the output.
182
+ :param max_period: controls the minimum frequency of the embeddings.
183
+ :return: an (N, D) Tensor of positional embeddings.
184
+ """
185
+ t = time_factor * t
186
+ half = dim // 2
187
+
188
+ # Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
189
+ # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
190
+
191
+ # Block CUDA steam, but consistent with official codes:
192
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
193
+
194
+ args = t[:, None].float() * freqs[None]
195
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
196
+ if dim % 2:
197
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
198
+ if torch.is_floating_point(t):
199
+ embedding = embedding.to(t)
200
+ return embedding
201
+
202
+
203
+ class MLPEmbedder(nn.Module):
204
+ def __init__(self, in_dim: int, hidden_dim: int):
205
+ super().__init__()
206
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
207
+ self.silu = nn.SiLU()
208
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
209
+
210
+ def forward(self, x: Tensor) -> Tensor:
211
+ return self.out_layer(self.silu(self.in_layer(x)))
212
+
213
+
214
+ class RMSNorm(torch.nn.Module):
215
+ def __init__(self, dim: int):
216
+ super().__init__()
217
+ self.scale = nn.Parameter(torch.ones(dim))
218
+
219
+ def forward(self, x: Tensor):
220
+ x_dtype = x.dtype
221
+ x = x.float()
222
+ rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
223
+ return (x * rrms).to(dtype=x_dtype) * self.scale
224
+
225
+
226
+ class QKNorm(torch.nn.Module):
227
+ def __init__(self, dim: int):
228
+ super().__init__()
229
+ self.query_norm = RMSNorm(dim)
230
+ self.key_norm = RMSNorm(dim)
231
+
232
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
233
+ q = self.query_norm(q)
234
+ k = self.key_norm(k)
235
+ return q.to(v), k.to(v)
236
+
237
+
238
+ class SelfAttention(nn.Module):
239
+ def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
240
+ super().__init__()
241
+ self.num_heads = num_heads
242
+ head_dim = dim // num_heads
243
+
244
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
245
+ self.norm = QKNorm(head_dim)
246
+ self.proj = nn.Linear(dim, dim)
247
+
248
+ def forward(self, x: Tensor, pe: Tensor) -> Tensor:
249
+ qkv = self.qkv(x)
250
+ # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
251
+ B, L, _ = qkv.shape
252
+ qkv = qkv.view(B, L, 3, self.num_heads, -1)
253
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
254
+ q, k = self.norm(q, k, v)
255
+ x = attention(q, k, v, pe=pe)
256
+ x = self.proj(x)
257
+ return x
258
+
259
+
260
+ @dataclass
261
+ class ModulationOut:
262
+ shift: Tensor
263
+ scale: Tensor
264
+ gate: Tensor
265
+
266
+
267
+ class Modulation(nn.Module):
268
+ def __init__(self, dim: int, double: bool):
269
+ super().__init__()
270
+ self.is_double = double
271
+ self.multiplier = 6 if double else 3
272
+ self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
273
+
274
+ def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
275
+ out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
276
+
277
+ return (
278
+ ModulationOut(*out[:3]),
279
+ ModulationOut(*out[3:]) if self.is_double else None,
280
+ )
281
+
282
+
283
+ class DoubleStreamBlock(nn.Module):
284
+ def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
285
+ super().__init__()
286
+
287
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
288
+ self.num_heads = num_heads
289
+ self.hidden_size = hidden_size
290
+ self.img_mod = Modulation(hidden_size, double=True)
291
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
292
+ self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
293
+
294
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
295
+ self.img_mlp = nn.Sequential(
296
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
297
+ nn.GELU(approximate="tanh"),
298
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
299
+ )
300
+
301
+ self.txt_mod = Modulation(hidden_size, double=True)
302
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
303
+ self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
304
+
305
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
306
+ self.txt_mlp = nn.Sequential(
307
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
308
+ nn.GELU(approximate="tanh"),
309
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
310
+ )
311
+
312
+ def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
313
+ img_mod1, img_mod2 = self.img_mod(vec)
314
+ txt_mod1, txt_mod2 = self.txt_mod(vec)
315
+
316
+ # prepare image for attention
317
+ img_modulated = self.img_norm1(img)
318
+ img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
319
+ img_qkv = self.img_attn.qkv(img_modulated)
320
+ # img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
321
+ B, L, _ = img_qkv.shape
322
+ H = self.num_heads
323
+ D = img_qkv.shape[-1] // (3 * H)
324
+ img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
325
+ img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
326
+
327
+ # prepare txt for attention
328
+ txt_modulated = self.txt_norm1(txt)
329
+ txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
330
+ txt_qkv = self.txt_attn.qkv(txt_modulated)
331
+ # txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
332
+ B, L, _ = txt_qkv.shape
333
+ txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
334
+ txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
335
+
336
+ # run actual attention
337
+ q = torch.cat((txt_q, img_q), dim=2)
338
+ k = torch.cat((txt_k, img_k), dim=2)
339
+ v = torch.cat((txt_v, img_v), dim=2)
340
+
341
+ attn = attention(q, k, v, pe=pe)
342
+ txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
343
+
344
+ # calculate the img bloks
345
+ img = img + img_mod1.gate * self.img_attn.proj(img_attn)
346
+ img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
347
+
348
+ # calculate the txt bloks
349
+ txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
350
+ txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
351
+ return img, txt
352
+
353
+
354
+ class SingleStreamBlock(nn.Module):
355
+ """
356
+ A DiT block with parallel linear layers as described in
357
+ https://arxiv.org/abs/2302.05442 and adapted modulation interface.
358
+ """
359
+
360
+ def __init__(
361
+ self,
362
+ hidden_size: int,
363
+ num_heads: int,
364
+ mlp_ratio: float = 4.0,
365
+ qk_scale: float | None = None,
366
+ ):
367
+ super().__init__()
368
+ self.hidden_dim = hidden_size
369
+ self.num_heads = num_heads
370
+ head_dim = hidden_size // num_heads
371
+ self.scale = qk_scale or head_dim**-0.5
372
+
373
+ self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
374
+ # qkv and mlp_in
375
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
376
+ # proj and mlp_out
377
+ self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
378
+
379
+ self.norm = QKNorm(head_dim)
380
+
381
+ self.hidden_size = hidden_size
382
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
383
+
384
+ self.mlp_act = nn.GELU(approximate="tanh")
385
+ self.modulation = Modulation(hidden_size, double=False)
386
+
387
+ def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
388
+ mod, _ = self.modulation(vec)
389
+ x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
390
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
391
+
392
+ # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
393
+ qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
394
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
395
+ q, k = self.norm(q, k, v)
396
+
397
+ # compute attention
398
+ attn = attention(q, k, v, pe=pe)
399
+ # compute activation in mlp stream, cat again and run second linear layer
400
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
401
+ return x + mod.gate * output
402
+
403
+
404
+ class LastLayer(nn.Module):
405
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
406
+ super().__init__()
407
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
408
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
409
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
410
+
411
+ def forward(self, x: Tensor, vec: Tensor) -> Tensor:
412
+ shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
413
+ x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
414
+ x = self.linear(x)
415
+ return x
416
+
417
+
418
+ class FluxParams:
419
+ in_channels: int = 64
420
+ vec_in_dim: int = 768
421
+ context_in_dim: int = 4096
422
+ hidden_size: int = 3072
423
+ mlp_ratio: float = 4.0
424
+ num_heads: int = 24
425
+ depth: int = 19
426
+ depth_single_blocks: int = 38
427
+ axes_dim: list = [16, 56, 56]
428
+ theta: int = 10_000
429
+ qkv_bias: bool = True
430
+ guidance_embed: bool = True
431
+
432
+
433
+ class Flux(nn.Module):
434
+ """
435
+ Transformer model for flow matching on sequences.
436
+ """
437
+
438
+ def __init__(self, params = FluxParams()):
439
+ super().__init__()
440
+
441
+ self.params = params
442
+ self.in_channels = params.in_channels
443
+ self.out_channels = self.in_channels
444
+ if params.hidden_size % params.num_heads != 0:
445
+ raise ValueError(
446
+ f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
447
+ )
448
+ pe_dim = params.hidden_size // params.num_heads
449
+ if sum(params.axes_dim) != pe_dim:
450
+ raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
451
+ self.hidden_size = params.hidden_size
452
+ self.num_heads = params.num_heads
453
+ self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
454
+ self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
455
+ self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
456
+ self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
457
+ # self.guidance_in = (
458
+ # MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
459
+ # )
460
+ self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
461
+
462
+ self.double_blocks = nn.ModuleList(
463
+ [
464
+ DoubleStreamBlock(
465
+ self.hidden_size,
466
+ self.num_heads,
467
+ mlp_ratio=params.mlp_ratio,
468
+ qkv_bias=params.qkv_bias,
469
+ )
470
+ for _ in range(params.depth)
471
+ ]
472
+ )
473
+
474
+ self.single_blocks = nn.ModuleList(
475
+ [
476
+ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
477
+ for _ in range(params.depth_single_blocks)
478
+ ]
479
+ )
480
+
481
+ self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
482
+
483
+ def forward(
484
+ self,
485
+ img: Tensor,
486
+ img_ids: Tensor,
487
+ txt: Tensor,
488
+ txt_ids: Tensor,
489
+ timesteps: Tensor,
490
+ y: Tensor,
491
+ guidance: Tensor | None = None,
492
+ use_guidance_vec = True,
493
+ ) -> Tensor:
494
+ if img.ndim != 3 or txt.ndim != 3:
495
+ raise ValueError("Input img and txt tensors must have 3 dimensions.")
496
+
497
+ # running on sequences img
498
+ img = self.img_in(img)
499
+ vec = self.time_in(timestep_embedding(timesteps, 256))
500
+ # if self.params.guidance_embed and use_guidance_vec:
501
+ # if guidance is None:
502
+ # raise ValueError("Didn't get guidance strength for guidance distilled model.")
503
+ # vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
504
+ vec = vec + self.vector_in(y)
505
+ txt = self.txt_in(txt)
506
+
507
+ ids = torch.cat((txt_ids, img_ids), dim=1)
508
+ pe = self.pe_embedder(ids)
509
+
510
+ for block in self.double_blocks:
511
+ img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
512
+
513
+ img = torch.cat((txt, img), 1)
514
+ for block in self.single_blocks:
515
+ img = block(img, vec=vec, pe=pe)
516
+ img = img[:, txt.shape[1] :, ...]
517
+
518
+ img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
519
+ return img
520
+
521
+
522
+ def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
523
+ bs, c, h, w = img.shape
524
+ if bs == 1 and not isinstance(prompt, str):
525
+ bs = len(prompt)
526
+
527
+ img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
528
+ if img.shape[0] == 1 and bs > 1:
529
+ img = repeat(img, "1 ... -> bs ...", bs=bs)
530
+
531
+ img_ids = torch.zeros(h // 2, w // 2, 3)
532
+ img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
533
+ img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
534
+ img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
535
+
536
+ if isinstance(prompt, str):
537
+ prompt = [prompt]
538
+ txt = t5(prompt)
539
+ if txt.shape[0] == 1 and bs > 1:
540
+ txt = repeat(txt, "1 ... -> bs ...", bs=bs)
541
+ txt_ids = torch.zeros(bs, txt.shape[1], 3)
542
+
543
+ vec = clip(prompt)
544
+ if vec.shape[0] == 1 and bs > 1:
545
+ vec = repeat(vec, "1 ... -> bs ...", bs=bs)
546
+
547
+ return {
548
+ "img": img,
549
+ "img_ids": img_ids.to(img.device),
550
+ "txt": txt.to(img.device),
551
+ "txt_ids": txt_ids.to(img.device),
552
+ "vec": vec.to(img.device),
553
+ }
554
+
555
+
556
+ def time_shift(mu: float, sigma: float, t: Tensor):
557
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
558
+
559
+
560
+ def get_lin_function(
561
+ x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
562
+ ) -> Callable[[float], float]:
563
+ m = (y2 - y1) / (x2 - x1)
564
+ b = y1 - m * x1
565
+ return lambda x: m * x + b
566
+
567
+
568
+ def get_schedule(
569
+ num_steps: int,
570
+ image_seq_len: int,
571
+ base_shift: float = 0.5,
572
+ max_shift: float = 1.15,
573
+ shift: bool = True,
574
+ ) -> list[float]:
575
+ # extra step for zero
576
+ timesteps = torch.linspace(1, 0, num_steps + 1)
577
+
578
+ # shifting the schedule to favor high timesteps for higher signal images
579
+ if shift:
580
+ # eastimate mu based on linear estimation between two points
581
+ mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
582
+ timesteps = time_shift(mu, 1.0, timesteps)
583
+
584
+ return timesteps.tolist()
585
+
586
+ @property
587
+ def joint_attention_kwargs(self):
588
+ return self._joint_attention_kwargs
589
+
590
+ def denoise(
591
+ model: Flux,
592
+ # model input
593
+ img: Tensor,
594
+ img_ids: Tensor,
595
+ txt: Tensor,
596
+ txt_ids: Tensor,
597
+ vec: Tensor,
598
+ # sampling parameters
599
+ timesteps: list[float],
600
+ guidance: float = 4.0,
601
+ use_cfg_guidance = False,
602
+ ):
603
+ # this is ignored for schnell
604
+ guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
605
+ for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:])):
606
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
607
+
608
+ if use_cfg_guidance:
609
+ half_x = img[:len(img)//2]
610
+ img = torch.cat([half_x, half_x], dim=0)
611
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
612
+
613
+ pred = model(
614
+ img=img,
615
+ img_ids=img_ids,
616
+ txt=txt,
617
+ txt_ids=txt_ids,
618
+ y=vec,
619
+ timesteps=t_vec,
620
+ guidance=guidance_vec,
621
+ joint_attention_kwargs=self.joint_attention_kwargs,
622
+ use_guidance_vec=not use_cfg_guidance,
623
+ )
624
+
625
+ if use_cfg_guidance:
626
+ uncond, cond = pred.chunk(2, dim=0)
627
+ model_output = uncond + guidance * (cond - uncond)
628
+ pred = torch.cat([model_output, model_output], dim=0)
629
+
630
+ img = img + (t_prev - t_curr) * pred
631
+
632
+ return img
633
+
634
+
635
+ def unpack(x: Tensor, height: int, width: int) -> Tensor:
636
+ return rearrange(
637
+ x,
638
+ "b (h w) (c ph pw) -> b c (h ph) (w pw)",
639
+ h=math.ceil(height / 16),
640
+ w=math.ceil(width / 16),
641
+ ph=2,
642
+ pw=2,
643
+ )
644
+
645
+ @dataclass
646
+ class SamplingOptions:
647
+ prompt: str
648
+ width: int
649
+ height: int
650
+ guidance: float
651
+ seed: int | None
652
+ joint_attention_kwargs: InitVar[Dict[str, Any]] | None
653
+
654
+
655
+ def get_image(image) -> torch.Tensor | None:
656
+ if image is None:
657
+ return None
658
+ image = Image.fromarray(image).convert("RGB")
659
+
660
+ transform = transforms.Compose([
661
+ transforms.ToTensor(),
662
+ transforms.Lambda(lambda x: 2.0 * x - 1.0),
663
+ ])
664
+ img: torch.Tensor = transform(image)
665
+ return img[None, ...]
666
+
667
+
668
+ # ---------------- Demo ----------------
669
+
670
+ class EmptyInitWrapper(torch.overrides.TorchFunctionMode):
671
+ def __init__(self, device=None):
672
+ self.device = device
673
+
674
+ def __torch_function__(self, func, types, args=(), kwargs=None):
675
+ kwargs = kwargs or {}
676
+ if getattr(func, "__module__", None) == "torch.nn.init":
677
+ if "tensor" in kwargs:
678
+ return kwargs["tensor"]
679
+ else:
680
+ return args[0]
681
+ if (
682
+ self.device is not None
683
+ and func in torch.utils._device._device_constructors()
684
+ and kwargs.get("device") is None
685
+ ):
686
+ kwargs["device"] = self.device
687
+ return func(*args, **kwargs)
688
+
689
+ with EmptyInitWrapper():
690
+ model = Flux().to(dtype=torch.bfloat16, device="cuda")
691
+
692
+ sd = load_file(f"{model_path}/OpenFlux-fp8_e4m3fn.safetensors")
693
+ sd = {k.replace("model.", ""): v for k, v in sd.items()}
694
+ result = model.load_state_dict(sd)
695
+
696
+ @torch.cuda.empty_cache()
697
+
698
+ @spaces.GPU(duration=70)
699
+ @torch.no_grad()
700
+ def generate_image(
701
+ prompt, neg_prompt, num_steps, width, height, guidance, seed,
702
+ do_img2img, init_image, image2image_strength, resize_img, lora_scale,
703
+ progress=gr.Progress(track_tqdm=True),
704
+ ):
705
+ if seed == 0:
706
+ seed = int(random.random() * 1000000)
707
+
708
+ device = "cuda" if torch.cuda.is_available() else "cpu"
709
+ torch_device = torch.device(device)
710
+
711
+ lora_scale = (self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None)
712
+
713
+ if do_img2img and init_image is not None:
714
+ init_image = get_image(init_image)
715
+ if resize_img:
716
+ init_image = torch.nn.functional.interpolate(init_image, (height, width))
717
+ else:
718
+ h, w = init_image.shape[-2:]
719
+ init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
720
+ height = init_image.shape[-2]
721
+ width = init_image.shape[-1]
722
+ init_image = ae.encode(init_image.to(torch_device)).latent_dist.sample()
723
+ init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
724
+
725
+ generator = torch.Generator(device=device).manual_seed(seed)
726
+ x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
727
+
728
+ with calculateDuration("Generating image"):
729
+ # Generate image
730
+ image = pipe(
731
+ prompt=f"{prompt} {trigger_word}",
732
+ neg_prompt=negative_prompt,
733
+ num_steps=steps,
734
+ guidance=cfg_scale,
735
+ width=width,
736
+ height=height,
737
+ generator=generator,
738
+ do_img2img=img2img,
739
+ init_image=upload_image,
740
+ image2image_strength=image2image_strength,
741
+ resize_img=resize_img,
742
+ joint_attention_kwargs={"scale": lora_scale},
743
+ ).images[0]
744
+ return image
745
+
746
+ # num_steps = 28
747
+ timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
748
+
749
+ if do_img2img and init_image is not None:
750
+ t_idx = int((1 - image2image_strength) * num_steps)
751
+ t = timesteps[t_idx]
752
+ timesteps = timesteps[t_idx:]
753
+ x = t * x + (1.0 - t) * init_image.to(x.dtype)
754
+
755
+ inp = prepare(t5=t5, clip=clip, img=x, prompt=[neg_prompt, prompt])
756
+ x = denoise(model, **inp, timesteps=timesteps, guidance=guidance, use_cfg_guidance=True, lora_scale=)
757
+
758
+ # with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
759
+ # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
760
+
761
+ x = unpack(x.float(), height, width)
762
+ with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
763
+ x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
764
+ x = ae.decode(x).sample
765
+
766
+ x = x.clamp(-1, 1)
767
+ x = rearrange(x[0], "c h w -> h w c")
768
+ img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
769
+
770
+ return img, seed
771
+
772
+
773
+ @torch.cuda.empty_cache()
774
+
775
+ class calculateDuration:
776
+ def __init__(self, activity_name=""):
777
+ self.activity_name = activity_name
778
+
779
+ def __enter__(self):
780
+ self.start_time = time.time()
781
+ return self
782
+
783
+ def __exit__(self, exc_type, exc_value, traceback):
784
+ self.end_time = time.time()
785
+ self.elapsed_time = self.end_time - self.start_time
786
+ if self.activity_name:
787
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
788
+ else:
789
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
790
+
791
+
792
+ def update_selection(evt: gr.SelectData, width, height):
793
+ selected_lora = loras[evt.index]
794
+ new_placeholder = f"Type a prompt for {selected_lora['title']}"
795
+ lora_repo = selected_lora["repo"]
796
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
797
+ if "aspect" in selected_lora:
798
+ if selected_lora["aspect"] == "portrait":
799
+ width = 768
800
+ height = 1024
801
+ elif selected_lora["aspect"] == "landscape":
802
+ width = 1024
803
+ height = 768
804
+ return (
805
+ gr.update(placeholder=new_placeholder),
806
+ updated_text,
807
+ evt.index,
808
+ width,
809
+ height,
810
+ )
811
+
812
+ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale, progress=gr.Progress(track_tqdm=True)):
813
+ if negative_prompt == "":
814
+ negative_prompt = None
815
+ if selected_index is None:
816
+ raise gr.Error("You must select a LoRA before proceeding.")
817
+
818
+ selected_lora = loras[selected_index]
819
+ lora_path = selected_lora["repo"]
820
+ trigger_word = selected_lora["trigger_word"]
821
+
822
+ # Load LoRA weights
823
+ with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
824
+ if "weights" in selected_lora:
825
+ pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
826
+ else:
827
+ pipe.load_lora_weights(lora_path)
828
+
829
+ # Set random seed for reproducibility
830
+ with calculateDuration("Randomizing seed"):
831
+ if randomize_seed:
832
+ seed = random.randint(0, 2**32-1)
833
+
834
+ image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress)
835
+ pipe.to("cpu")
836
+ pipe.unload_lora_weights()
837
+ return image, seed
838
+
839
+ run_lora.zerogpu = True
840
+
841
+ css = '''
842
+ #gen_btn{height: 100%}
843
+ #title{text-align: center}
844
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
845
+ #title img{width: 100px; margin-right: 0.5em}
846
+ #gallery .grid-wrap{height: 10vh}
847
+ '''
848
+ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
849
+ title = gr.HTML(
850
+ """<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""",
851
+ elem_id="title",
852
+ )
853
+ # Info blob stating what the app is running
854
+ info_blob = gr.HTML(
855
+ """<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>"""
856
+ )
857
+ # Info blob stating what the app is running
858
+ info_blob = gr.HTML(
859
+ """<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover </div>"""
860
+ )
861
+ selected_index = gr.State(None)
862
+ with gr.Row():
863
+ with gr.Column(scale=3):
864
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
865
+ with gr.Row():
866
+ with gr.Column(scale=3):
867
+ negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!")
868
+ with gr.Column(scale=1, elem_id="gen_column"):
869
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
870
+ with gr.Row():
871
+ with gr.Column(scale=3):
872
+ selected_info = gr.Markdown("")
873
+ gallery = gr.Gallery(
874
+ [(item["image"], item["title"]) for item in loras],
875
+ label="LoRA Inventory",
876
+ allow_preview=False,
877
+ columns=3,
878
+ elem_id="gallery"
879
+ )
880
+
881
+ with gr.Column(scale=4):
882
+ result = gr.Image(label="Generated Image")
883
+
884
+ with gr.Row():
885
+ with gr.Accordion("Advanced Settings", open=True):
886
+ with gr.Column():
887
+ with gr.Row():
888
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=1, value=3)
889
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6)
890
+
891
+ with gr.Row():
892
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
893
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768)
894
+
895
+ with gr.Row():
896
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
897
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
898
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
899
+
900
+ gallery.select(
901
+ update_selection,
902
+ inputs=[width, height],
903
+ outputs=[prompt, selected_info, selected_index, width, height]
904
+ )
905
+
906
+ gr.on(
907
+ triggers=[generate_button.click, prompt.submit],
908
+ fn=run_lora,
909
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale],
910
+ outputs=[result, seed]
911
+ )
912
+
913
+ warnings.filterwarnings("ignore", category=FutureWarning)
914
+ app.queue(default_concurrency_limit=2).launch(show_error=True)
915
+ app.launch()