Spaces:
Runtime error
Runtime error
Update pipeline.py
Browse files- pipeline.py +1 -31
pipeline.py
CHANGED
|
@@ -67,39 +67,9 @@ def prepare_timesteps(
|
|
| 67 |
|
| 68 |
# FLUX pipeline function
|
| 69 |
class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
| 70 |
-
|
| 71 |
-
r"""
|
| 72 |
-
The Flux pipeline for text-to-image generation.
|
| 73 |
-
|
| 74 |
-
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
transformer ([`FluxTransformer2DModel`]):
|
| 78 |
-
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 79 |
-
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 80 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 81 |
-
vae ([`AutoencoderKL`]):
|
| 82 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 83 |
-
text_encoder ([`CLIPTextModel`]):
|
| 84 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 85 |
-
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 86 |
-
text_encoder_2 ([`T5EncoderModel`]):
|
| 87 |
-
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
| 88 |
-
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 89 |
-
tokenizer (`CLIPTokenizer`):
|
| 90 |
-
Tokenizer of class
|
| 91 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 92 |
-
tokenizer_2 (`T5TokenizerFast`):
|
| 93 |
-
Second Tokenizer of class
|
| 94 |
-
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
| 95 |
-
"""
|
| 96 |
-
|
| 97 |
-
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
| 98 |
-
_optional_components = []
|
| 99 |
-
_callback_tensor_inputs = ["latents", "prompt_embeds"] model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
| 100 |
_optional_components = []
|
| 101 |
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
| 102 |
-
|
| 103 |
def __init__(
|
| 104 |
self,
|
| 105 |
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
|
|
| 67 |
|
| 68 |
# FLUX pipeline function
|
| 69 |
class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
_optional_components = []
|
| 71 |
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
| 72 |
+
|
| 73 |
def __init__(
|
| 74 |
self,
|
| 75 |
scheduler: FlowMatchEulerDiscreteScheduler,
|