Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,21 +4,35 @@ import logging
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import spaces
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
import copy
|
9 |
import random
|
10 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load LoRAs from JSON file
|
13 |
with open('loras.json', 'r') as f:
|
14 |
loras = json.load(f)
|
15 |
|
16 |
# Initialize the base model
|
|
|
|
|
17 |
base_model = "John6666/real-flux-10b-schnell-fp8-flux"
|
18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
19 |
|
|
|
|
|
|
|
|
|
20 |
MAX_SEED = 2**32-1
|
21 |
|
|
|
|
|
22 |
class calculateDuration:
|
23 |
def __init__(self, activity_name=""):
|
24 |
self.activity_name = activity_name
|
@@ -49,30 +63,33 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
49 |
width = 1024
|
50 |
height = 768
|
51 |
return (
|
52 |
-
gr.update(placeholder=new_placeholder),
|
|
|
53 |
updated_text,
|
54 |
evt.index,
|
55 |
width,
|
56 |
height,
|
|
|
57 |
)
|
58 |
|
59 |
@spaces.GPU(duration=70)
|
60 |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
61 |
pipe.to("cuda")
|
62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
63 |
-
|
64 |
with calculateDuration("Generating image"):
|
65 |
# Generate image
|
66 |
-
|
67 |
-
prompt=
|
68 |
num_inference_steps=steps,
|
69 |
guidance_scale=cfg_scale,
|
70 |
width=width,
|
71 |
height=height,
|
72 |
generator=generator,
|
73 |
joint_attention_kwargs={"scale": lora_scale},
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
|
77 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
78 |
if selected_index is None:
|
@@ -81,6 +98,19 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
81 |
selected_lora = loras[selected_index]
|
82 |
lora_path = selected_lora["repo"]
|
83 |
trigger_word = selected_lora["trigger_word"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Load LoRA weights
|
86 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
@@ -94,10 +124,18 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
94 |
if randomize_seed:
|
95 |
seed = random.randint(0, MAX_SEED)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
run_lora.zerogpu = True
|
103 |
|
@@ -156,20 +194,21 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
156 |
with gr.Row():
|
157 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
158 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
159 |
-
|
|
|
160 |
|
161 |
gallery.select(
|
162 |
update_selection,
|
163 |
-
inputs=[width, height],
|
164 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
165 |
)
|
166 |
|
167 |
gr.on(
|
168 |
triggers=[generate_button.click, prompt.submit],
|
169 |
fn=run_lora,
|
170 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
171 |
-
outputs=[result, seed]
|
172 |
)
|
173 |
|
174 |
app.queue(default_concurrency_limit=2).launch(show_error=True)
|
175 |
-
app.launch()
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import spaces
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
8 |
import copy
|
9 |
import random
|
10 |
import time
|
11 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
12 |
+
from huggingface_hub import HfFileSystem, ModelCard
|
13 |
+
|
14 |
+
from huggingface_hub import login
|
15 |
+
hf_token = os.environ.get("HF_TOKEN")
|
16 |
+
login(token=hf_token)
|
17 |
|
18 |
# Load LoRAs from JSON file
|
19 |
with open('loras.json', 'r') as f:
|
20 |
loras = json.load(f)
|
21 |
|
22 |
# Initialize the base model
|
23 |
+
dtype = torch.bfloat16
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
base_model = "John6666/real-flux-10b-schnell-fp8-flux"
|
26 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
27 |
|
28 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
29 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
30 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
31 |
+
|
32 |
MAX_SEED = 2**32-1
|
33 |
|
34 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
35 |
+
|
36 |
class calculateDuration:
|
37 |
def __init__(self, activity_name=""):
|
38 |
self.activity_name = activity_name
|
|
|
63 |
width = 1024
|
64 |
height = 768
|
65 |
return (
|
66 |
+
#gr.update(placeholder=new_placeholder),
|
67 |
+
prompt,
|
68 |
updated_text,
|
69 |
evt.index,
|
70 |
width,
|
71 |
height,
|
72 |
+
lora_scale,
|
73 |
)
|
74 |
|
75 |
@spaces.GPU(duration=70)
|
76 |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
77 |
pipe.to("cuda")
|
78 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
79 |
with calculateDuration("Generating image"):
|
80 |
# Generate image
|
81 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
82 |
+
prompt=prompt_mash,
|
83 |
num_inference_steps=steps,
|
84 |
guidance_scale=cfg_scale,
|
85 |
width=width,
|
86 |
height=height,
|
87 |
generator=generator,
|
88 |
joint_attention_kwargs={"scale": lora_scale},
|
89 |
+
output_type="pil",
|
90 |
+
good_vae=good_vae,
|
91 |
+
):
|
92 |
+
yield img
|
93 |
|
94 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
95 |
if selected_index is None:
|
|
|
98 |
selected_lora = loras[selected_index]
|
99 |
lora_path = selected_lora["repo"]
|
100 |
trigger_word = selected_lora["trigger_word"]
|
101 |
+
if(trigger_word):
|
102 |
+
if "trigger_position" in selected_lora:
|
103 |
+
if selected_lora["trigger_position"] == "prepend":
|
104 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
105 |
+
else:
|
106 |
+
prompt_mash = f"{prompt} {trigger_word}"
|
107 |
+
else:
|
108 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
109 |
+
else:
|
110 |
+
prompt_mash = prompt
|
111 |
+
|
112 |
+
with calculateDuration("Unloading LoRA"):
|
113 |
+
pipe.unload_lora_weights()
|
114 |
|
115 |
# Load LoRA weights
|
116 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
|
|
124 |
if randomize_seed:
|
125 |
seed = random.randint(0, MAX_SEED)
|
126 |
|
127 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
128 |
+
# Consume the generator to get the final image
|
129 |
+
final_image = None
|
130 |
+
step_counter = 0
|
131 |
+
for image in image_generator:
|
132 |
+
step_counter+=1
|
133 |
+
final_image = image
|
134 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
135 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
136 |
+
|
137 |
+
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
138 |
+
|
139 |
|
140 |
run_lora.zerogpu = True
|
141 |
|
|
|
194 |
with gr.Row():
|
195 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
196 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
197 |
+
default_scale = gr.Checkbox(True, label="Use default LoRA scale")
|
198 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=0.95)
|
199 |
|
200 |
gallery.select(
|
201 |
update_selection,
|
202 |
+
inputs=[width, height, default_scale, lora_scale],
|
203 |
+
outputs=[prompt, selected_info, selected_index, width, height, lora_scale]
|
204 |
)
|
205 |
|
206 |
gr.on(
|
207 |
triggers=[generate_button.click, prompt.submit],
|
208 |
fn=run_lora,
|
209 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
210 |
+
outputs=[result, seed, progress_bar]
|
211 |
)
|
212 |
|
213 |
app.queue(default_concurrency_limit=2).launch(show_error=True)
|
214 |
+
app.launch()
|