import gradio as gr

from hyper_parameters import tacotron_params as hparams
from training import load_model

from audio_processing import griffin_lim
from nn_layers import TacotronSTFT


from text import text_to_sequence
from hifigan.env import AttrDict
from examples_taco2 import *

from hifigan.models import Generator

import torch
import numpy as np
import json
import os

from matplotlib import pyplot as plt

# Adjust vertical spacing between subplots
plt.subplots_adjust(hspace=0.15)  # You can adjust the value as needed

# Adjust the white space (margins) around the plot
plt.tight_layout(pad=0.5)  # You can adjust the pad value as needed

torch.manual_seed(1234)
MAX_WAV_VALUE = 32768.0


def load_checkpoint(filepath, device):
    assert os.path.isfile(filepath)
    print("Loading '{}'".format(filepath))
    checkpoint_dict = torch.load(filepath, map_location=device)
    print("Complete.")
    return checkpoint_dict


def plot_spec_align_sep(mel, align):
    plt.figure(figsize=(4, 3))

    fig_mel = plt.figure()
    ax_mel = fig_mel.add_subplot(111)
    fig_mel.tight_layout()
    ax_mel.imshow(mel)
    # fig_mel.set_title('Mel-Scale Spectrogram', fontsize=12)

    fig_align = plt.figure()
    ax_align = fig_align.add_subplot(111)  # fig_align
    fig_align.tight_layout()
    ax_align.imshow(align)
    # fig_align.set_title('Alignment', fontsize=12)

    return fig_mel, fig_align


# load trained tacotron2 + GST model:
model = load_model(hparams)
checkpoint_path = "models/checkpoint_78000.model"
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")['state_dict'])
# model.to('cuda')
_ = model.eval()

# load pre-trained HiFi-GAN model for mel2audio:
hifigan_checkpoint_path = "models/generator_v1"
config_file = os.path.join(os.path.split(hifigan_checkpoint_path)[0], 'config.json')
with open(config_file) as f:
    data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
device = torch.device("cpu")

generator = Generator(h).to(device)

state_dict_g = load_checkpoint(hifigan_checkpoint_path, device)
generator.load_state_dict(state_dict_g['generator'])
generator.eval()
generator.remove_weight_norm()


def synthesize(text, gst_1, gst_2, gst_3, voc):
    sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
    sequence = torch.from_numpy(sequence).to(device='cpu', dtype=torch.int64)

    # gst_head_scores = np.array([0.5, 0.15, 0.35])
    gst_head_scores = np.array([gst_1, gst_2, gst_3])
    gst_scores = torch.from_numpy(gst_head_scores).float()

    with torch.no_grad():
        mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence, gst_scores)

    if voc == 0:
        # mel2wav inference:
        with torch.no_grad():
            y_g_hat = generator(mel_outputs_postnet)
            audio = y_g_hat.squeeze()
            audio = audio * MAX_WAV_VALUE
            audio_numpy = audio.cpu().numpy().astype('int16')
            # audio = vocoder_model.inference(mel_outputs_postnet)
            # audio_numpy = audio.data.cpu().detach().numpy()

    else:
        # Griffin Lim vocoder synthesis:
        griffin_iters = 60
        taco_stft = TacotronSTFT(hparams['filter_length'], hparams['hop_length'], hparams['win_length'],
                                 sampling_rate=hparams['sampling_rate'])

        mel_decompress = taco_stft.spectral_de_normalize(mel_outputs_postnet)
        mel_decompress = mel_decompress.transpose(1, 2).data.cpu()

        spec_from_mel_scaling = 60
        spec_from_mel = torch.mm(mel_decompress[0], taco_stft.mel_basis)
        spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
        spec_from_mel = spec_from_mel * spec_from_mel_scaling

        audio = griffin_lim(torch.autograd.Variable(spec_from_mel[:, :, :-1]), taco_stft.stft_fn, griffin_iters)

        audio = audio.squeeze()
        audio_numpy = audio.cpu().numpy()

    # prepare plot for the output:
    mel_outputs_postnet = torch.flip(mel_outputs_postnet.squeeze(), [0])
    mel_outputs_postnet = mel_outputs_postnet.detach().numpy()
    alignments = alignments.squeeze().T.detach().numpy()

    # normalize numpy arrays between [-1, 1]
    min_val = np.min(mel_outputs_postnet)
    max_val = np.max(mel_outputs_postnet)
    scaled_mel = (mel_outputs_postnet - min_val) / (max_val - min_val)
    normalized_mel = 2 * scaled_mel - 1

    min_val = np.min(alignments)
    max_val = np.max(alignments)
    scaled_align = (alignments - min_val) / (max_val - min_val)
    normalized_align = 2 * scaled_align - 1

    aw = gr.make_waveform((22050, audio_numpy), bg_image='background_images/wallpaper_test_1_crop_3.jpg',
                          bars_color=('#f3df4b', '#63edb7'), bar_count=100, bar_width=0.7, animate=True)

    return aw, normalized_mel, normalized_align  # (22050, audio_numpy), fig_mel, fig_align


with gr.Blocks() as demo:
    gr.Markdown("<center><h1>English Neural Text-to-Speech</h1> "
                "<h2>Speech Synthesis with Partial Style Control</h2></center><br>")
    # gr.Markdown("## <center>Unsupervised Style Tokens using Single-Head Attention Parallel Encoder "
    #             "with Tacotron2</center>")
    with gr.Row():
        with gr.Column(scale=1):
            # , value="Speech synthesis has evolved dramatically since the development of neural architectures capable of generating high quality samples."
            inp = gr.Textbox(label="Input Text")
            clear_btn = gr.ClearButton(value='Clear Text', size='sm', components=[inp])
            # gr.Markdown("A continuació, calibrem els pesos dels *style tokens*:")
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("Global Style Tokens"):
                        gst_1 = gr.Slider(0.2, 0.45, label="GST 1", value=0.4)
                        gst_2 = gr.Slider(0.2, 0.45, label="GST 2", value=0.26)
                        gst_3 = gr.Slider(0.2, 0.45, label="GST 3", value=0.33)
                with gr.Column(scale=0):
                    with gr.Tab("Vocoder"):
                        vocoder = gr.Radio([("HiFi-GAN", 0), ("Griffin-Lim", 1)],
                                           container=False, value=0, min_width=300)  # label="Vocoder")
                    greet_btn = gr.Button("Synthesize!", scale=1)
        with gr.Column():
            with gr.Tab("Spectrogram"):
                spec_plot = gr.Image(container=False)
            with gr.Tab("Alignment"):
                align_plot = gr.Image(container=False)
            wave_video = gr.Video(label="Waveform", height=150, width=800, container=False)

    def display_video():
        return wave_video
    greet_btn.click(fn=synthesize, inputs=[inp, gst_1, gst_2, gst_3, vocoder],
                    outputs=[wave_video, spec_plot, align_plot],
                    api_name="synthesize")

    with gr.Row():
        with gr.Column():
            gr.Examples(examples=infer_from_text_examples,
                        inputs=[inp, gst_1, gst_2, gst_3, vocoder],
                        outputs=[wave_video, spec_plot, align_plot],
                        fn=synthesize,
                        cache_examples=False, )
    gr.Markdown("""
    ### Details and Indications
    This is a Text-to-Speech (TTS) system that consists of two modules: 1) a Tacotron2 replicated model, which generates
    the spectrogram of the speech corresponding to the input text. And 2) a pre-trained HiFiGAN vocoder that maps the 
    spectrogram to a digital waveform. Global Style Tokens (GST) have been implemented to catch style information from
    the female speaker with which the model has been trained (see the links below for more information).
    Please, feel free to play with the GST scores and observe how the synthetic voice spells the input text. 
    Keep in mind that GSTs have been trained in an unsupervised way, so there is no specific control of 
    style attributes. Moreover, try to balance the GST scores by making them add up to a value close to 1. Below or 
    higher than 1 may cause low energy, mispronunciations or distortion. 
    You can choose between the HiFiGAN trained vocoder and the iterative algorithm Griffin-Lim, which does not need 
    to be trained, but produces a speech quite "robotic".
    
    ### More Information
    Spectrogram generator has been adapted and trained from the 
    [NVIDIA's](https://github.com/NVIDIA/tacotron2) Tacotron2 replica published in 
    <a href="https://arxiv.org/abs/1712.05884" style="display: inline-block;margin-top: .5em;margin-right: .25em;" 
    target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" 
    src="https://img.shields.io/badge/ArXiv-Tacotron2-b31b1b" alt="Tacotron2"></a> 
    <br> 
    The neural vocoder is a pre-trained model replicated from <a href="https://arxiv.org/abs/2010.05646" 
    style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 
    0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/ArXiv-HiFi%20GAN-b31b1b" 
    alt="HiFiGAN"></a> 
    <br> 
    Unsupervised style control has been implemented based on <a href="https://arxiv.org/abs/1803.09017" style="display: 
    inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: 
    inline;margin-top: -.25em;" src="https://img.shields.io/badge/ArXiv-Global%20Style%20Tokens-b31b1b" 
    alt="Global Style Tokens"></a> 
    <br> 
    """)

    """Instead of using multiple heads for the attention module, we just set one single 
    head for simplicity, ease control purposes, but also to observer whether this attention still 
    works with just one head."""

demo.launch()