import logging import time from pathlib import Path import contextlib logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", ) import gradio as gr import nltk import torch from det2rec import * _here = Path(__file__).parent nltk.download("stopwords") # TODO=find where this requirement originates from def load_uploaded_file(file_obj, temp_dir: Path = None): """ load_uploaded_file - process an uploaded file Args: file_obj (POTENTIALLY list): Gradio file object inside a list Returns: str, the uploaded file contents """ # check if mysterious file object is a list if isinstance(file_obj, list): file_obj = file_obj[0] file_path = Path(file_obj.name) if temp_dir is None: _temp_dir = _here / "temp" _temp_dir.mkdir(exist_ok=True) try: pdf_bytes_obj = open(file_path, "rb").read() temp_path = temp_dir / file_path.name if temp_dir else file_path # save to PDF file with open(temp_path, "wb") as f: f.write(pdf_bytes_obj) logging.info(f"The uploaded file saved to {temp_path}") return str(temp_path.resolve()) except Exception as e: logging.error(f"Trying to load file with path {file_path}, error: {e}") print(f"Trying to load file with path {file_path}, error: {e}") return None def convert_PDF( pdf_obj, language: str = "en", max_pages=20, ): """ convert_PDF - convert a PDF file to text Args: pdf_bytes_obj (bytes): PDF file contents language (str, optional): Language to use for OCR. Defaults to "en". Returns: str, the PDF file contents as text """ # clear local text cache rm_local_text_files() global ocr_model st = time.perf_counter() if isinstance(pdf_obj, list): pdf_obj = pdf_obj[0] file_path = Path(pdf_obj.name) if not file_path.suffix == ".pdf": logging.error(f"File {file_path} is not a PDF file") html_error = f"""
WARNING - PDF was truncated to {max_pages} pages
" html += f"Runtime: {rt} minutes on CPU for {num_pages} pages
" _output_name = f"RESULT_{file_path.stem}_OCR.txt" with open(_output_name, "w", encoding="utf-8", errors="ignore") as f: f.write(converted_txt) return converted_txt, html, _output_name if __name__ == "__main__": logging.info("Starting app") use_GPU = torch.cuda.is_available() logging.info(f"Using GPU status: {use_GPU}") logging.info("Loading OCR model") with contextlib.redirect_stdout(None): ocr_model = ocr_predictor( "db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True, ) # define pdf bytes as None pdf_obj = _here / "exampler.pdf" pdf_obj = str(pdf_obj.resolve()) _temp_dir = _here / "temp" _temp_dir.mkdir(exist_ok=True) logging.info("starting demo") demo = gr.Blocks() with demo: gr.Markdown("# PDF to Text") gr.Markdown( "A basic demo for end-to-end text detection and recognition where the input will be in pdf format and the result is text conversion using OCR from the [doctr](https://mindee.github.io/doctr/index.html) package" ) gr.Markdown("---") gr.Markdown("---") with gr.Column(): gr.Markdown("## Load Inputs") gr.Markdown("Upload your own file & replace the default. Files should be < 10MB to avoid upload issues - search for a PDF compressor online as needed.") gr.Markdown( "_If no file is uploaded, a sample PDF will be used. PDFs are truncated to 20 pages._" ) uploaded_file = gr.File( label="Upload a PDF file", file_count="single", type="file", value=_here / "exampler.pdf", ) gr.Markdown("---") with gr.Column(): gr.Markdown("## Convert PDF to Text") convert_button = gr.Button("Convert PDF!", variant="primary") out_placeholder = gr.HTML("Output will appear below:
") gr.Markdown("### Output") OCR_text = gr.Textbox( label="OCR Result", placeholder="The OCR text will appear here" ) text_file = gr.File( label="Download Text File", file_count="single", type="file", interactive=False, ) convert_button.click( fn=convert_PDF, inputs=[uploaded_file], outputs=[OCR_text, out_placeholder, text_file], ) demo.launch(enable_queue=True)