Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import logging | |
import spacy | |
from presidio_analyzer import RecognizerRegistry | |
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider | |
logger = logging.getLogger("presidio-streamlit") | |
def create_nlp_engine_with_spacy( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a spaCy model | |
:param model_path: spaCy model path. | |
""" | |
if not spacy.util.is_package(model_path): | |
spacy.cli.download(model_path) | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": model_path.split('_')[0], "model_name": model_path}], | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry = RecognizerRegistry() | |
# registry.load_predefined_recognizers() | |
registry.load_predefined_recognizers(nlp_engine=nlp_engine, languages=["fr", "en"]) | |
registry.add_recognizers_from_yaml("recognizers.yaml") | |
return nlp_engine, registry | |
# def create_nlp_engine_with_transformers( | |
# model_path: str, | |
# ) -> Tuple[NlpEngine, RecognizerRegistry]: | |
# """ | |
# Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model. | |
# The TransformersRecognizer would return results from Transformers models, the spaCy model | |
# would return NlpArtifacts such as POS and lemmas. | |
# :param model_path: HuggingFace model path. | |
# """ | |
# | |
# from transformers_rec import ( | |
# STANFORD_COFIGURATION, | |
# BERT_DEID_CONFIGURATION, | |
# TransformersRecognizer, | |
# ) | |
# | |
# registry = RecognizerRegistry() | |
# registry.load_predefined_recognizers() | |
# | |
# if not spacy.util.is_package("en_core_web_sm"): | |
# spacy.cli.download("en_core_web_sm") | |
# # Using a small spaCy model + a HF NER model | |
# transformers_recognizer = TransformersRecognizer(model_path=model_path) | |
# | |
# if model_path == "StanfordAIMI/stanford-deidentifier-base": | |
# transformers_recognizer.load_transformer(**STANFORD_COFIGURATION) | |
# elif model_path == "obi/deid_roberta_i2b2": | |
# transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
# else: | |
# print(f"Warning: Model has no configuration, loading default.") | |
# transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
# | |
# # Use small spaCy model, no need for both spacy and HF models | |
# # The transformers model is used here as a recognizer, not as an NlpEngine | |
# nlp_configuration = { | |
# "nlp_engine_name": "spacy", | |
# "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], | |
# } | |
# | |
# registry.add_recognizer(transformers_recognizer) | |
# registry.remove_recognizer("SpacyRecognizer") | |
# | |
# nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
# | |
# return nlp_engine, registry | |
# def create_nlp_engine_with_flair( | |
# model_path: str, | |
# ) -> Tuple[NlpEngine, RecognizerRegistry]: | |
# """ | |
# Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model. | |
# The FlairRecognizer would return results from Flair models, the spaCy model | |
# would return NlpArtifacts such as POS and lemmas. | |
# :param model_path: Flair model path. | |
# """ | |
# from flair_recognizer import FlairRecognizer | |
# | |
# registry = RecognizerRegistry() | |
# registry.load_predefined_recognizers() | |
# | |
# if not spacy.util.is_package("en_core_web_sm"): | |
# spacy.cli.download("en_core_web_sm") | |
# # Using a small spaCy model + a Flair NER model | |
# flair_recognizer = FlairRecognizer(model_path=model_path) | |
# nlp_configuration = { | |
# "nlp_engine_name": "spacy", | |
# "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], | |
# } | |
# registry.add_recognizer(flair_recognizer) | |
# registry.remove_recognizer("SpacyRecognizer") | |
# | |
# nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
# | |
# return nlp_engine, registry | |
# def create_nlp_engine_with_azure_text_analytics(ta_key: str, ta_endpoint: str): | |
# """ | |
# Instantiate an NlpEngine with a TextAnalyticsWrapper and a small spaCy model. | |
# The TextAnalyticsWrapper would return results from calling Azure Text Analytics PII, the spaCy model | |
# would return NlpArtifacts such as POS and lemmas. | |
# :param ta_key: Azure Text Analytics key. | |
# :param ta_endpoint: Azure Text Analytics endpoint. | |
# """ | |
# from text_analytics_wrapper import TextAnalyticsWrapper | |
# | |
# if not ta_key or not ta_endpoint: | |
# raise RuntimeError("Please fill in the Text Analytics endpoint details") | |
# | |
# registry = RecognizerRegistry() | |
# registry.load_predefined_recognizers() | |
# | |
# ta_recognizer = TextAnalyticsWrapper(ta_endpoint=ta_endpoint, ta_key=ta_key) | |
# nlp_configuration = { | |
# "nlp_engine_name": "spacy", | |
# "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], | |
# } | |
# | |
# nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
# | |
# registry.add_recognizer(ta_recognizer) | |
# registry.remove_recognizer("SpacyRecognizer") | |
# | |
# return nlp_engine, registry | |