Spaces:
Sleeping
Sleeping
"""Streamlit app for Presidio.""" | |
import logging | |
import os | |
import traceback | |
import dotenv | |
import pandas as pd | |
import streamlit as st | |
import streamlit.components.v1 as components | |
from annotated_text import annotated_text | |
from streamlit_tags import st_tags | |
# from openai_fake_data_generator import OpenAIParams | |
from presidio_helpers import ( | |
get_supported_entities, | |
analyze, | |
anonymize, | |
annotate, | |
# create_fake_data, | |
analyzer_engine, | |
) | |
st.set_page_config( | |
page_title="Presidio demo", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
# menu_items={ | |
# "About": "https://microsoft.github.io/presidio/", | |
# }, | |
) | |
dotenv.load_dotenv() | |
logger = logging.getLogger("presidio-streamlit") | |
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False) | |
# Sidebar | |
st.sidebar.header( | |
""" | |
Personal Info Anonymization | |
""" | |
) | |
# set aliae logo | |
st.sidebar.image('logo.png', use_column_width=True) | |
model_help_text = """ | |
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers. | |
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair, | |
as well as service such as Azure Text Analytics PII. | |
""" | |
st_ta_key = st_ta_endpoint = "" | |
model_list = [ | |
"spaCy/en_core_web_lg", | |
"spaCy/fr_core_news_md", | |
] | |
# "flair/ner-english-large", | |
# | |
# "HuggingFace/StanfordAIMI/stanford-deidentifier-base", | |
# "Azure Text Analytics PII", | |
# "Other", | |
# if not allow_other_models: | |
# model_list.pop() | |
# Select model | |
lang = st.sidebar.selectbox( | |
"Language", | |
['en','fr'], | |
index=0, | |
) | |
# Extract model package. | |
# st_model_package = st_model.split("/")[0] | |
st_model_package = 'spaCy' | |
# # Remove package prefix (if needed) | |
# st_model = ( | |
# st_model | |
# if st_model_package not in ("spaCy", "HuggingFace") | |
# else "/".join(st_model.split("/")[1:]) | |
# ) | |
st_model = 'en_core_web_lg' | |
if lang =='en': st_model = 'en_core_web_lg' | |
elif lang == 'fr' : st_model = 'fr_core_news_md' | |
# if st_model == "Other": | |
# st_model_package = st.sidebar.selectbox( | |
# "NER model OSS package", options=["spaCy", "Flair", "HuggingFace"] | |
# ) | |
# st_model = st.sidebar.text_input(f"NER model name", value="") | |
# if st_model == "Azure Text Analytics PII": | |
# st_ta_key = st.sidebar.text_input( | |
# f"Text Analytics key", value=os.getenv("TA_KEY", ""), type="password" | |
# ) | |
# st_ta_endpoint = st.sidebar.text_input( | |
# f"Text Analytics endpoint", | |
# value=os.getenv("TA_ENDPOINT", default=""), | |
# help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", # noqa: E501 | |
# ) | |
# st.sidebar.warning("Note: Models might take some time to download. ") | |
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint) | |
logger.debug(f"analyzer_params: {analyzer_params}") | |
st_operator = st.sidebar.selectbox( | |
"De-identification approach", | |
["redact", "replace", "highlight"], | |
index=2, | |
help=""" | |
Select which manipulation to the text is requested after PII has been identified.\n | |
- Redact: Completely remove the PII text\n | |
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n | |
- Highlight: Shows the original text with PII highlighted in colors\n | |
""", | |
) | |
st_mask_char = "*" | |
st_number_of_chars = 15 | |
st_encrypt_key = "WmZq4t7w!z%C&F)J" | |
open_ai_params = None | |
logger.debug(f"st_operator: {st_operator}") | |
# if st_operator == "mask": | |
# st_number_of_chars = st.sidebar.number_input( | |
# "number of chars", value=st_number_of_chars, min_value=0, max_value=100 | |
# ) | |
# st_mask_char = st.sidebar.text_input( | |
# "Mask character", value=st_mask_char, max_chars=1 | |
# ) | |
# elif st_operator == "encrypt": | |
# st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key) | |
# elif st_operator == "synthesize": | |
# if os.getenv("OPENAI_TYPE", default="openai") == "Azure": | |
# openai_api_type = "azure" | |
# st_openai_api_base = st.sidebar.text_input( | |
# "Azure OpenAI base URL", | |
# value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""), | |
# ) | |
# st_deployment_name = st.sidebar.text_input( | |
# "Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="") | |
# ) | |
# st_openai_version = st.sidebar.text_input( | |
# "OpenAI version", | |
# value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"), | |
# ) | |
# else: | |
# st_openai_version = openai_api_type = st_openai_api_base = None | |
# st_deployment_name = "" | |
# st_openai_key = st.sidebar.text_input( | |
# "OPENAI_KEY", | |
# value=os.getenv("OPENAI_KEY", default=""), | |
# help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.", | |
# type="password", | |
# ) | |
# st_openai_model = st.sidebar.text_input( | |
# "OpenAI model for text synthesis", | |
# value=os.getenv("OPENAI_MODEL", default="text-davinci-003"), | |
# help="See more here: https://platform.openai.com/docs/models/", | |
# ) | |
# | |
# open_ai_params = OpenAIParams( | |
# openai_key=st_openai_key, | |
# model=st_openai_model, | |
# api_base=st_openai_api_base, | |
# deployment_name=st_deployment_name, | |
# api_version=st_openai_version, | |
# api_type=openai_api_type, | |
# ) | |
# st_threshold = st.sidebar.slider( | |
# label="Acceptance threshold", | |
# min_value=0.0, | |
# max_value=1.0, | |
# value=0.35, | |
# help="Define the threshold for accepting a detection as PII. See more here: ", | |
# ) | |
st_threshold = 0.35 | |
# | |
# st_return_decision_process = st.sidebar.checkbox( | |
# "Add analysis explanations to findings", | |
# value=False, | |
# help="Add the decision process to the output table. " | |
# "More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/", | |
# ) | |
st_return_decision_process = False | |
# # Allow and deny lists | |
# st_deny_allow_expander = st.sidebar.expander( | |
# "Allowlists and denylists", | |
# expanded=False, | |
# ) | |
# | |
# with st_deny_allow_expander: | |
# st_allow_list = st_tags( | |
# label="Add words to the allowlist", text="Enter word and press enter." | |
# ) | |
# st.caption( | |
# "Allowlists contain words that are not considered PII, but are detected as such." | |
# ) | |
# | |
# st_deny_list = st_tags( | |
# label="Add words to the denylist", text="Enter word and press enter." | |
# ) | |
# st.caption( | |
# "Denylists contain words that are considered PII, but are not detected as such." | |
# ) | |
st_allow_list = [] | |
st_deny_list = [] | |
# Main panel | |
with st.expander("About Microsoft Presidio", expanded=False): | |
st.info( | |
"""Presidio is an open source customizable framework for PII detection and de-identification.""" | |
) | |
analyzer_load_state = st.info("Starting Presidio analyzer...") | |
analyzer_load_state.empty() | |
# Read default text | |
with open("en_demo_text.txt") as f: | |
en_demo_text = f.readlines() | |
with open("fr_demo_text.txt") as f: | |
fr_demo_text = f.readlines() | |
if lang == 'en': demo_text = en_demo_text | |
elif lang == 'fr': demo_text = fr_demo_text | |
# Create two columns for before and after | |
col1, col2 = st.columns(2) | |
# Before: | |
col1.subheader("Input") | |
st_text = col1.text_area( | |
label="Enter text", value="".join(demo_text), height=400, key="text_input" | |
) | |
try: | |
# Choose entities | |
st_entities_expander = st.sidebar.expander("Choose entities to look for") | |
st_entities = st_entities_expander.multiselect( | |
label="Which entities to look for?", | |
options=get_supported_entities(*analyzer_params), | |
default=list(get_supported_entities(*analyzer_params)), | |
help="Limit the list of PII entities detected. " | |
"This list is dynamic and based on the NER model and registered recognizers. " | |
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/", | |
) | |
# Before | |
analyzer_load_state = st.info("Starting Presidio analyzer...") | |
analyzer = analyzer_engine(*analyzer_params) | |
analyzer_load_state.empty() | |
st_analyze_results = analyze( | |
*analyzer_params, | |
text=st_text, | |
entities=st_entities, | |
language=lang, | |
score_threshold=st_threshold, | |
return_decision_process=st_return_decision_process, | |
allow_list=st_allow_list, | |
deny_list=st_deny_list, | |
) | |
# After | |
if st_operator not in ("highlight", "synthesize"): | |
with col2: | |
st.subheader(f"Output") | |
st_anonymize_results = anonymize( | |
text=st_text, | |
operator=st_operator, | |
mask_char=st_mask_char, | |
number_of_chars=st_number_of_chars, | |
encrypt_key=st_encrypt_key, | |
analyze_results=st_analyze_results, | |
) | |
st.text_area( | |
label="De-identified", value=st_anonymize_results.text, height=400 | |
) | |
# elif st_operator == "synthesize": | |
# with col2: | |
# st.subheader(f"OpenAI Generated output") | |
# fake_data = create_fake_data( | |
# st_text, | |
# st_analyze_results, | |
# open_ai_params, | |
# ) | |
# st.text_area(label="Synthetic data", value=fake_data, height=400) | |
else: | |
st.subheader("Highlighted") | |
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results) | |
# annotated_tokens | |
annotated_text(*annotated_tokens) | |
# table result | |
st.subheader( | |
"Findings" | |
if not st_return_decision_process | |
else "Findings with decision factors" | |
) | |
if st_analyze_results: | |
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results]) | |
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results] | |
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename( | |
{ | |
"entity_type": "Entity type", | |
"text": "Text", | |
"start": "Start", | |
"end": "End", | |
"score": "Confidence", | |
}, | |
axis=1, | |
) | |
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results] | |
if st_return_decision_process: | |
analysis_explanation_df = pd.DataFrame.from_records( | |
[r.analysis_explanation.to_dict() for r in st_analyze_results] | |
) | |
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1) | |
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True) | |
else: | |
st.text("No findings") | |
except Exception as e: | |
print(e) | |
traceback.print_exc() | |
st.error(e) | |
components.html( | |
""" | |
<script type="text/javascript"> | |
(function(c,l,a,r,i,t,y){ | |
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)}; | |
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i; | |
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y); | |
})(window, document, "clarity", "script", "h7f8bp42n8"); | |
</script> | |
""" | |
) | |