Spaces:
Runtime error
Runtime error
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
|
3 |
+
def transcribe_audio(audio_path):
|
4 |
+
model = whisper.load_model("base")
|
5 |
+
result = model.transcribe(audio_path)
|
6 |
+
return result["text"]
|
7 |
+
from pyannote.audio import Pipeline
|
8 |
+
|
9 |
+
def perform_speaker_diarization(audio_path):
|
10 |
+
pipeline = Pipeline.from_pretrained("pyannote/[email protected]", use_auth_token="YOUR_HUGGINGFACE_TOKEN")
|
11 |
+
diarization = pipeline(audio_path)
|
12 |
+
|
13 |
+
speaker_segments = []
|
14 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
15 |
+
speaker_segments.append({
|
16 |
+
"start": turn.start,
|
17 |
+
"end": turn.end,
|
18 |
+
"speaker": speaker
|
19 |
+
})
|
20 |
+
return speaker_segments
|
21 |
+
|
22 |
+
from textblob import TextBlob
|
23 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
24 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
25 |
+
from collections import Counter
|
26 |
+
import nltk
|
27 |
+
from nltk.corpus import stopwords
|
28 |
+
import spacy
|
29 |
+
|
30 |
+
nltk.download('stopwords')
|
31 |
+
nltk.download('punkt')
|
32 |
+
|
33 |
+
# Load spaCy model for NER
|
34 |
+
nlp = spacy.load("en_core_web_sm")
|
35 |
+
|
36 |
+
def analyze_sentiment(text):
|
37 |
+
blob = TextBlob(text)
|
38 |
+
return blob.sentiment.polarity, blob.sentiment.subjectivity
|
39 |
+
|
40 |
+
def extract_keywords(text, top_n=5):
|
41 |
+
stop_words = set(stopwords.words("english"))
|
42 |
+
words = nltk.word_tokenize(text.lower())
|
43 |
+
filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
|
44 |
+
word_counts = Counter(filtered_words)
|
45 |
+
return word_counts.most_common(top_n)
|
46 |
+
|
47 |
+
def perform_topic_modeling(text, num_topics=5, num_words=10):
|
48 |
+
vectorizer = CountVectorizer(stop_words="english", max_features=1000)
|
49 |
+
X = vectorizer.fit_transform([text])
|
50 |
+
lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)
|
51 |
+
lda.fit(X)
|
52 |
+
|
53 |
+
topics = []
|
54 |
+
for idx, topic in enumerate(lda.components_):
|
55 |
+
top_words = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-num_words - 1:-1]]
|
56 |
+
topics.append(f"Topic {idx + 1}: {' '.join(top_words)}")
|
57 |
+
return topics
|
58 |
+
|
59 |
+
def extract_entities(text):
|
60 |
+
doc = nlp(text)
|
61 |
+
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
62 |
+
return entities
|
63 |
+
|
64 |
+
def parse_query(query):
|
65 |
+
doc = nlp(query)
|
66 |
+
keywords = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
|
67 |
+
intent = None
|
68 |
+
|
69 |
+
if any(word in ["how many", "count"] for word in keywords):
|
70 |
+
intent = "count"
|
71 |
+
elif any(word in ["list", "show me"] for word in keywords):
|
72 |
+
intent = "list"
|
73 |
+
elif any(word in ["sentiment", "polarity", "subjectivity"] for word in keywords):
|
74 |
+
intent = "sentiment"
|
75 |
+
elif any(word in ["theme", "topic", "main"] for word in keywords):
|
76 |
+
intent = "topic"
|
77 |
+
elif any(word in ["keyword", "common"] for word in keywords):
|
78 |
+
intent = "keyword"
|
79 |
+
elif any(word in ["entity", "name", "person", "organization"] for word in keywords):
|
80 |
+
intent = "ner"
|
81 |
+
return intent, keywords
|
82 |
+
|
83 |
+
def answer_question(query, qa_df):
|
84 |
+
intent, keywords = parse_query(query)
|
85 |
+
|
86 |
+
if intent == "count":
|
87 |
+
filtered = qa_df[qa_df["Transcript"].str.contains("|".join(keywords), case=False)]
|
88 |
+
return f"{len(filtered)} responses contain the keywords: {', '.join(keywords)}."
|
89 |
+
|
90 |
+
elif intent == "list":
|
91 |
+
filtered = qa_df[qa_df["Transcript"].str.contains("|".join(keywords), case=False)]["Transcript"].tolist()
|
92 |
+
return "\n".join(filtered) if filtered else "No matching responses found."
|
93 |
+
|
94 |
+
elif intent == "sentiment":
|
95 |
+
avg_polarity = qa_df["Sentiment_Polarity"].mean()
|
96 |
+
avg_subjectivity = qa_df["Sentiment_Subjectivity"].mean()
|
97 |
+
return f"Average Polarity: {avg_polarity:.2f}, Average Subjectivity: {avg_subjectivity:.2f}"
|
98 |
+
|
99 |
+
elif intent == "topic":
|
100 |
+
all_text = " ".join(qa_df["Transcript"])
|
101 |
+
topics = perform_topic_modeling(all_text)
|
102 |
+
return "\n".join(topics)
|
103 |
+
|
104 |
+
elif intent == "keyword":
|
105 |
+
all_text = " ".join(qa_df["Transcript"])
|
106 |
+
keywords = extract_keywords(all_text)
|
107 |
+
return ", ".join([word for word, count in keywords])
|
108 |
+
|
109 |
+
elif intent == "ner":
|
110 |
+
all_text = " ".join(qa_df["Transcript"])
|
111 |
+
entities = extract_entities(all_text)
|
112 |
+
return "\n".join([f"{entity} ({label})" for entity, label in entities])
|
113 |
+
|
114 |
+
else:
|
115 |
+
return "I'm not sure how to answer that. Try asking about counts, lists, sentiment, topics, keywords, or entities."
|
116 |
+
|
117 |
+
import gradio as gr
|
118 |
+
|
119 |
+
# Global variables to store processed data
|
120 |
+
qa_df = None
|
121 |
+
|
122 |
+
def process_audio(audio_path):
|
123 |
+
global qa_df
|
124 |
+
|
125 |
+
# Step 1: Transcribe audio
|
126 |
+
transcription = transcribe_audio(audio_path)
|
127 |
+
|
128 |
+
# Step 2: Perform speaker diarization
|
129 |
+
speaker_segments = perform_speaker_diarization(audio_path)
|
130 |
+
|
131 |
+
# Step 3: Analyze text
|
132 |
+
sentiment_polarity, sentiment_subjectivity = analyze_sentiment(transcription)
|
133 |
+
topics = perform_topic_modeling(transcription)
|
134 |
+
keywords = extract_keywords(transcription)
|
135 |
+
entities = extract_entities(transcription)
|
136 |
+
|
137 |
+
# Create a DataFrame
|
138 |
+
qa_df = pd.DataFrame({
|
139 |
+
"Speaker": [seg["speaker"] for seg in speaker_segments],
|
140 |
+
"Transcript": [transcription],
|
141 |
+
"Sentiment_Polarity": [sentiment_polarity],
|
142 |
+
"Sentiment_Subjectivity": [sentiment_subjectivity],
|
143 |
+
"Topics": [topics],
|
144 |
+
"Keywords": [keywords],
|
145 |
+
"Entities": [entities]
|
146 |
+
})
|
147 |
+
|
148 |
+
return "Audio processed successfully!"
|
149 |
+
|
150 |
+
# Gradio Interface
|
151 |
+
with gr.Blocks() as demo:
|
152 |
+
gr.Markdown("# Advanced Audio Analysis App")
|
153 |
+
audio_input = gr.Audio(label="Upload Audio File")
|
154 |
+
process_button = gr.Button("Process Audio")
|
155 |
+
status_output = gr.Textbox(label="Status")
|
156 |
+
|
157 |
+
question_input = gr.Textbox(label="Ask a Question")
|
158 |
+
answer_output = gr.Textbox(label="Answer")
|
159 |
+
|
160 |
+
process_button.click(process_audio, inputs=audio_input, outputs=status_output)
|
161 |
+
question_input.submit(answer_question, inputs=[question_input], outputs=answer_output)
|
162 |
+
|
163 |
+
demo.launch()
|