Spaces:
Runtime error
Runtime error
File size: 8,380 Bytes
c2fded3 eda8ec5 c2fded3 4658555 eda8ec5 fa841be c2fded3 e25fc13 c2fded3 eda8ec5 e25fc13 c2fded3 e25fc13 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 4658555 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 eda8ec5 c2fded3 e2a2e88 c2fded3 e2a2e88 c2fded3 eda8ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import pandas as pd
from sklearn.cluster import KMeans
from sentence_transformers import SentenceTransformer
from keybert import KeyBERT
import numpy as np
import os
import io
from crewai import Agent, Task, Crew
from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
# === CONFIGURATION ===
HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_API_TOKEN") # Set this in environment
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2" # Publicly available!
# Setup LLM via HuggingFace Hub
llm = HuggingFaceEndpoint(
repo_id=MODEL_NAME,
max_length=128,
temperature=0.4,
token=HUGGINGFACEHUB_API_TOKEN
)
# Load embedding model and session state as before...
# Setup LLM via HuggingFace Hub
llm = HuggingFaceHub(
repo_id=MODEL_NAME,
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
model_kwargs={"temperature": 0.4, "max_new_tokens": 64}
)
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
keyword_extractor = KeyBERT(model="distilbert-base-nli-mean-tokens")
session = {
"original_df": None,
"current_df": None,
"context": "",
"topic_labels": {},
"keywords": {},
"clusters_verified": False
}
# === AGENTS ===
keyword_agent = Agent(
role='Keyword Analyst',
goal='Extract top 5 keywords from a group of similar texts',
backstory="""You are a skilled keyword analyst who identifies patterns in text data.
You focus on extracting concise, meaningful keywords that represent the core themes.""",
llm=llm,
verbose=False
)
labeling_agent = Agent(
role='Topic Labeler',
goal='Generate a short label for a group of similar texts based on context',
backstory="""You are a professional theme summarizer. Given example texts and a user context,
you generate clear and actionable topic labels.""",
llm=llm,
verbose=False
)
validation_agent = Agent(
role='QA Analyst',
goal='Evaluate whether the clustered topics and keywords form coherent themes',
backstory="""You are a quality assurance expert evaluating if generated topics make sense.
You return 'Approved' or 'Needs Refinement' based on coherence.""",
llm=llm,
verbose=False
)
finalizer_agent = Agent(
role='Data Engineer',
goal='Prepare final labeled dataset for download',
backstory="""You finalize the structured output file after approval and ensure it's ready for export.""",
llm=llm,
verbose=False
)
# === TASKS ===
def create_tasks(text_samples, context_input):
extract_keywords_task = Task(
description=f"Extract 5 most relevant keywords from the following sample texts:\n\n{text_samples}",
agent=keyword_agent,
expected_output="Comma-separated list of keywords"
)
label_topic_task = Task(
description=f"Based on the following examples and instruction: '{context_input}', generate a concise topic label.\n\n{text_samples}",
agent=labeling_agent,
expected_output="A single line topic label"
)
validate_cluster_task = Task(
description=f"Evaluate whether the topic label and keywords make sense together.\n\nLABEL: {{label}}\nKEYWORDS: {{keywords}}",
agent=validation_agent,
expected_output="'Approved' or 'Needs Refinement'"
)
finalize_data_task = Task(
description="Take the approved labeled DataFrame and format it for download.",
agent=finalizer_agent,
expected_output="Final CSV content as string"
)
return extract_keywords_task, label_topic_task, validate_cluster_task, finalize_data_task
# === CLUSTERING ===
def cluster_texts(texts, n_clusters=10):
embeddings = embedding_model.encode(texts, show_progress_bar=False)
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
return kmeans.fit_predict(embeddings)
# === FULL PIPELINE FUNCTION ===
def run_initial_analysis(csv_file, context_input, n_clusters=10):
try:
df = pd.read_csv(csv_file.name)
except Exception as e:
return f"Error reading CSV: {str(e)}", "", ""
session['original_df'] = df.copy()
session['context'] = context_input
if 'text' not in df.columns:
return "CSV must contain a column named 'text'", "", ""
texts = df['text'].tolist()
clusters = cluster_texts(texts, n_clusters)
df['cluster'] = clusters
topic_labels = {}
keywords_map = {}
for i in range(n_clusters):
cluster_texts_i = [texts[j] for j in range(len(clusters)) if clusters[j] == i]
if not cluster_texts_i:
continue
samples = "\n".join(cluster_texts_i[:3])
# Create CrewAI Tasks for this cluster
ext_task, lbl_task, val_task, _ = create_tasks(samples, context_input)
# Run keyword extraction
crew_keyword = Crew(agents=[keyword_agent], tasks=[ext_task])
keyword_result = crew_keyword.kickoff()
keywords_map[i] = keyword_result.raw.strip()
# Run labeling
crew_label = Crew(agents=[labeling_agent], tasks=[lbl_task])
label_result = crew_label.kickoff()
topic_labels[i] = label_result.raw.strip()
# Assign labels and keywords back to DataFrame
df['label'] = df['cluster'].map(topic_labels)
df['keywords'] = df['cluster'].map(keywords_map)
session['current_df'] = df
# Validate Clusters
validation_prompts = []
for cid in topic_labels:
val_task = Task(
description=f"Evaluate whether the topic label and keywords make sense together.\n\nLABEL: {topic_labels[cid]}\nKEYWORDS: {keywords_map.get(cid, '')}",
agent=validation_agent,
expected_output="'Approved' or 'Needs Refinement'"
)
crew_validate = Crew(agents=[validation_agent], tasks=[val_task])
res = crew_validate.kickoff()
if "Needs" in res.raw:
session["clusters_verified"] = False
break
else:
session["clusters_verified"] = True
output = io.StringIO()
df.to_csv(output, index=False)
csv_str = output.getvalue()
return "Initial analysis complete!", csv_str, df.head(10).to_markdown(index=False)
# === REFINEMENT FUNCTION ===
def refine_labels(feedback_input):
if session['current_df'] is None:
return "No data found. Please run initial analysis first.", "", ""
df = session['current_df']
current_sample = df[['text', 'label']].head(10).to_markdown(index=False)
prompt = f"""
You are helping refine topic labels based on user feedback.
Current Labels:
{current_sample}
User Feedback:
{feedback_input}
Task:
Reassign labels accordingly. Keep output format consistent: one label per line.
Instructions:
Return only the revised labels, one per line.
"""
# Simulating refinement using the same LLM
response = llm(prompt)
new_labels = response.strip().split('\n')[:len(df)]
df['label'] = new_labels[:len(df)]
session['current_df'] = df
output = io.StringIO()
df.to_csv(output, index=False)
csv_str = output.getvalue()
return "Labels refined!", csv_str, df.head(10).to_markdown(index=False)
# === GRADIO UI ===
with gr.Blocks(title="🧠 CrewAI + Open LLM Topic Modeling") as demo:
gr.Markdown("# 🎯 CrewAI-Powered Topic Modeling with Open LLMs")
gr.Markdown("Upload verbatims, get topics via multi-agent system using LLaMA / Mistral / Zephyr.")
with gr.Row():
with gr.Column():
upload = gr.File(label="Upload CSV ('text' column)", file_types=[".csv"])
context = gr.Textbox(label="Context/Instruction", lines=5, value="Group these into common themes.")
cluster_slider = gr.Slider(2, 20, value=10, step=1, label="Number of Topics")
run_btn = gr.Button("Run Initial Analysis")
with gr.Column():
feedback = gr.Textbox(label="Feedback / Instructions for Refinement", lines=5)
refine_btn = gr.Button("Refine Labels")
status = gr.Textbox(label="Status")
preview = gr.Textbox(label="First 10 Rows (Editable View)", lines=10)
download = gr.File(label="Download Final Labeled CSV")
run_btn.click(fn=run_initial_analysis, inputs=[upload, context, cluster_slider], outputs=[status, download, preview])
refine_btn.click(fn=refine_labels, inputs=[feedback], outputs=[status, download, preview])
if __name__ == "__main__":
demo.launch() |