Alimubariz124 commited on
Commit
528c0a0
·
verified ·
1 Parent(s): cf4f8aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -63
app.py CHANGED
@@ -1,64 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from model_loader import load_embedding_model, load_llm
3
+ from transcript_handler import chunk_text, embed_chunks, create_faiss_index
4
+ from qa_engine import query_faiss, build_prompt
5
+
6
+ embedder = load_embedding_model()
7
+ llm = load_llm()
8
+
9
+ index = None
10
+ chunks = []
11
+
12
+ def upload_transcript(file):
13
+ global index, chunks
14
+ text = file.read().decode("utf-8")
15
+ chunks = chunk_text(text)
16
+ embeddings, chunks = embed_chunks(chunks, embedder)
17
+ index = create_faiss_index(embeddings)
18
+ return "Transcript uploaded and indexed successfully!"
19
+
20
+ def chat_with_transcript(query):
21
+ if not index:
22
+ return "Please upload a transcript first."
23
+ context = query_faiss(query, index, embedder, chunks)
24
+ prompt = build_prompt(context, query)
25
+ response = llm(prompt)[0]['generated_text'].split("Answer:")[-1].strip()
26
+ return response
27
+
28
+ with gr.Blocks() as demo:
29
+ gr.Markdown("# 📄 Chat with a Transcript (Open Source + Free!)")
30
+ transcript_input = gr.File(label="Upload Transcript (.txt)")
31
+ upload_button = gr.Button("Upload and Process")
32
+ query_input = gr.Textbox(label="Ask a question about the transcript")
33
+ answer_output = gr.Textbox(label="Answer")
34
+
35
+ upload_button.click(upload_transcript, inputs=[transcript_input], outputs=[])
36
+ query_input.submit(chat_with_transcript, inputs=[query_input], outputs=[answer_output])
37
+
38
+ demo.launch()