Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from model_loader import load_embedding_model, load_llm
|
3 |
+
from transcript_handler import chunk_text, embed_chunks, create_faiss_index
|
4 |
+
from qa_engine import query_faiss, build_prompt
|
5 |
+
|
6 |
+
embedder = load_embedding_model()
|
7 |
+
llm = load_llm()
|
8 |
+
|
9 |
+
index = None
|
10 |
+
chunks = []
|
11 |
+
|
12 |
+
def upload_transcript(file):
|
13 |
+
global index, chunks
|
14 |
+
text = file.read().decode("utf-8")
|
15 |
+
chunks = chunk_text(text)
|
16 |
+
embeddings, chunks = embed_chunks(chunks, embedder)
|
17 |
+
index = create_faiss_index(embeddings)
|
18 |
+
return "Transcript uploaded and indexed successfully!"
|
19 |
+
|
20 |
+
def chat_with_transcript(query):
|
21 |
+
if not index:
|
22 |
+
return "Please upload a transcript first."
|
23 |
+
context = query_faiss(query, index, embedder, chunks)
|
24 |
+
prompt = build_prompt(context, query)
|
25 |
+
response = llm(prompt)[0]['generated_text'].split("Answer:")[-1].strip()
|
26 |
+
return response
|
27 |
+
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
gr.Markdown("# 📄 Chat with a Transcript (Open Source + Free!)")
|
30 |
+
transcript_input = gr.File(label="Upload Transcript (.txt)")
|
31 |
+
upload_button = gr.Button("Upload and Process")
|
32 |
+
query_input = gr.Textbox(label="Ask a question about the transcript")
|
33 |
+
answer_output = gr.Textbox(label="Answer")
|
34 |
+
|
35 |
+
upload_button.click(upload_transcript, inputs=[transcript_input], outputs=[])
|
36 |
+
query_input.submit(chat_with_transcript, inputs=[query_input], outputs=[answer_output])
|
37 |
+
|
38 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|