Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,36 +3,61 @@ from model_loader import load_embedding_model, load_llm
|
|
3 |
from transcript_handler import chunk_text, embed_chunks, create_faiss_index
|
4 |
from qa_engine import query_faiss, build_prompt
|
5 |
|
|
|
6 |
embedder = load_embedding_model()
|
7 |
llm = load_llm()
|
8 |
|
9 |
-
|
10 |
-
chunks = []
|
11 |
-
|
12 |
-
def upload_transcript(file):
|
13 |
-
global index, chunks
|
14 |
-
text = file.read().decode("utf-8")
|
15 |
-
chunks = chunk_text(text)
|
16 |
-
embeddings, chunks = embed_chunks(chunks, embedder)
|
17 |
-
index = create_faiss_index(embeddings)
|
18 |
-
return "Transcript uploaded and indexed successfully!"
|
19 |
-
|
20 |
-
def chat_with_transcript(query):
|
21 |
-
if not index:
|
22 |
-
return "Please upload a transcript first."
|
23 |
-
context = query_faiss(query, index, embedder, chunks)
|
24 |
-
prompt = build_prompt(context, query)
|
25 |
-
response = llm(prompt)[0]['generated_text'].split("Answer:")[-1].strip()
|
26 |
-
return response
|
27 |
-
|
28 |
with gr.Blocks() as demo:
|
29 |
gr.Markdown("# 📄 Chat with a Transcript (Open Source + Free!)")
|
|
|
|
|
|
|
|
|
|
|
30 |
transcript_input = gr.File(label="Upload Transcript (.txt)")
|
31 |
upload_button = gr.Button("Upload and Process")
|
32 |
query_input = gr.Textbox(label="Ask a question about the transcript")
|
33 |
answer_output = gr.Textbox(label="Answer")
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
demo.launch()
|
|
|
3 |
from transcript_handler import chunk_text, embed_chunks, create_faiss_index
|
4 |
from qa_engine import query_faiss, build_prompt
|
5 |
|
6 |
+
# Load models
|
7 |
embedder = load_embedding_model()
|
8 |
llm = load_llm()
|
9 |
|
10 |
+
# Main Gradio app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
with gr.Blocks() as demo:
|
12 |
gr.Markdown("# 📄 Chat with a Transcript (Open Source + Free!)")
|
13 |
+
|
14 |
+
# State variables for storing index and chunks per session
|
15 |
+
index_state = gr.State(None)
|
16 |
+
chunks_state = gr.State([])
|
17 |
+
|
18 |
transcript_input = gr.File(label="Upload Transcript (.txt)")
|
19 |
upload_button = gr.Button("Upload and Process")
|
20 |
query_input = gr.Textbox(label="Ask a question about the transcript")
|
21 |
answer_output = gr.Textbox(label="Answer")
|
22 |
|
23 |
+
def upload_transcript(file, chunks_state):
|
24 |
+
try:
|
25 |
+
text = file.read().decode("utf-8")
|
26 |
+
if not text.strip():
|
27 |
+
return "Error: Uploaded file is empty.", None, []
|
28 |
+
|
29 |
+
chunks = chunk_text(text)
|
30 |
+
if not chunks:
|
31 |
+
return "Error: No chunks generated from the transcript.", None, []
|
32 |
+
|
33 |
+
embeddings, chunks = embed_chunks(chunks, embedder)
|
34 |
+
if embeddings.size == 0:
|
35 |
+
return "Error: Failed to generate embeddings.", None, []
|
36 |
+
|
37 |
+
index = create_faiss_index(embeddings)
|
38 |
+
return "Transcript uploaded and indexed successfully!", index, chunks
|
39 |
+
except Exception as e:
|
40 |
+
return f"Error processing transcript: {str(e)}", None, []
|
41 |
+
|
42 |
+
def chat_with_transcript(query, index_state, chunks_state):
|
43 |
+
if index_state is None:
|
44 |
+
return "Please upload a transcript first."
|
45 |
+
context = query_faiss(query, index_state, embedder, chunks_state)
|
46 |
+
prompt = build_prompt(context, query)
|
47 |
+
response = llm(prompt)[0]['generated_text']
|
48 |
+
if "Answer:" not in response:
|
49 |
+
return "Error: Unable to parse the model's response."
|
50 |
+
return response.split("Answer:")[-1].strip()
|
51 |
+
|
52 |
+
upload_button.click(
|
53 |
+
upload_transcript,
|
54 |
+
inputs=[transcript_input, chunks_state],
|
55 |
+
outputs=[answer_output, index_state, chunks_state]
|
56 |
+
)
|
57 |
+
query_input.submit(
|
58 |
+
chat_with_transcript,
|
59 |
+
inputs=[query_input, index_state, chunks_state],
|
60 |
+
outputs=[answer_output]
|
61 |
+
)
|
62 |
|
63 |
+
demo.launch()
|