Spaces:
Sleeping
Sleeping
| # training with captions | |
| # XXX dropped option: hypernetwork training | |
| import argparse | |
| import math | |
| import os | |
| from multiprocessing import Value | |
| import toml | |
| from tqdm import tqdm | |
| import torch | |
| from library import deepspeed_utils | |
| from library.device_utils import init_ipex, clean_memory_on_device | |
| init_ipex() | |
| from accelerate.utils import set_seed | |
| from diffusers import DDPMScheduler | |
| from library.utils import setup_logging, add_logging_arguments | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| import library.train_util as train_util | |
| import library.config_util as config_util | |
| from library.config_util import ( | |
| ConfigSanitizer, | |
| BlueprintGenerator, | |
| ) | |
| import library.custom_train_functions as custom_train_functions | |
| from library.custom_train_functions import ( | |
| apply_snr_weight, | |
| get_weighted_text_embeddings, | |
| prepare_scheduler_for_custom_training, | |
| scale_v_prediction_loss_like_noise_prediction, | |
| apply_debiased_estimation, | |
| ) | |
| def train(args): | |
| train_util.verify_training_args(args) | |
| train_util.prepare_dataset_args(args, True) | |
| deepspeed_utils.prepare_deepspeed_args(args) | |
| setup_logging(args, reset=True) | |
| cache_latents = args.cache_latents | |
| if args.seed is not None: | |
| set_seed(args.seed) # 乱数系列を初期化する | |
| tokenizer = train_util.load_tokenizer(args) | |
| # データセットを準備する | |
| if args.dataset_class is None: | |
| blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, False, True)) | |
| if args.dataset_config is not None: | |
| logger.info(f"Load dataset config from {args.dataset_config}") | |
| user_config = config_util.load_user_config(args.dataset_config) | |
| ignored = ["train_data_dir", "in_json"] | |
| if any(getattr(args, attr) is not None for attr in ignored): | |
| logger.warning( | |
| "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( | |
| ", ".join(ignored) | |
| ) | |
| ) | |
| else: | |
| user_config = { | |
| "datasets": [ | |
| { | |
| "subsets": [ | |
| { | |
| "image_dir": args.train_data_dir, | |
| "metadata_file": args.in_json, | |
| } | |
| ] | |
| } | |
| ] | |
| } | |
| blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) | |
| train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) | |
| else: | |
| train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer) | |
| current_epoch = Value("i", 0) | |
| current_step = Value("i", 0) | |
| ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None | |
| collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) | |
| train_dataset_group.verify_bucket_reso_steps(64) | |
| if args.debug_dataset: | |
| train_util.debug_dataset(train_dataset_group) | |
| return | |
| if len(train_dataset_group) == 0: | |
| logger.error( | |
| "No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。" | |
| ) | |
| return | |
| if cache_latents: | |
| assert ( | |
| train_dataset_group.is_latent_cacheable() | |
| ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" | |
| # acceleratorを準備する | |
| logger.info("prepare accelerator") | |
| accelerator = train_util.prepare_accelerator(args) | |
| # mixed precisionに対応した型を用意しておき適宜castする | |
| weight_dtype, save_dtype = train_util.prepare_dtype(args) | |
| vae_dtype = torch.float32 if args.no_half_vae else weight_dtype | |
| # モデルを読み込む | |
| text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator) | |
| # verify load/save model formats | |
| if load_stable_diffusion_format: | |
| src_stable_diffusion_ckpt = args.pretrained_model_name_or_path | |
| src_diffusers_model_path = None | |
| else: | |
| src_stable_diffusion_ckpt = None | |
| src_diffusers_model_path = args.pretrained_model_name_or_path | |
| if args.save_model_as is None: | |
| save_stable_diffusion_format = load_stable_diffusion_format | |
| use_safetensors = args.use_safetensors | |
| else: | |
| save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors" | |
| use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) | |
| # Diffusers版のxformers使用フラグを設定する関数 | |
| def set_diffusers_xformers_flag(model, valid): | |
| # model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう | |
| # pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`) | |
| # U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか | |
| # 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^) | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_use_memory_efficient_attention_xformers method | |
| # gets the message | |
| def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
| if hasattr(module, "set_use_memory_efficient_attention_xformers"): | |
| module.set_use_memory_efficient_attention_xformers(valid) | |
| for child in module.children(): | |
| fn_recursive_set_mem_eff(child) | |
| fn_recursive_set_mem_eff(model) | |
| # モデルに xformers とか memory efficient attention を組み込む | |
| if args.diffusers_xformers: | |
| accelerator.print("Use xformers by Diffusers") | |
| set_diffusers_xformers_flag(unet, True) | |
| else: | |
| # Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある | |
| accelerator.print("Disable Diffusers' xformers") | |
| set_diffusers_xformers_flag(unet, False) | |
| train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) | |
| # 学習を準備する | |
| if cache_latents: | |
| vae.to(accelerator.device, dtype=vae_dtype) | |
| vae.requires_grad_(False) | |
| vae.eval() | |
| with torch.no_grad(): | |
| train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) | |
| vae.to("cpu") | |
| clean_memory_on_device(accelerator.device) | |
| accelerator.wait_for_everyone() | |
| # 学習を準備する:モデルを適切な状態にする | |
| training_models = [] | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| training_models.append(unet) | |
| if args.train_text_encoder: | |
| accelerator.print("enable text encoder training") | |
| if args.gradient_checkpointing: | |
| text_encoder.gradient_checkpointing_enable() | |
| training_models.append(text_encoder) | |
| else: | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder.requires_grad_(False) # text encoderは学習しない | |
| if args.gradient_checkpointing: | |
| text_encoder.gradient_checkpointing_enable() | |
| text_encoder.train() # required for gradient_checkpointing | |
| else: | |
| text_encoder.eval() | |
| if not cache_latents: | |
| vae.requires_grad_(False) | |
| vae.eval() | |
| vae.to(accelerator.device, dtype=vae_dtype) | |
| for m in training_models: | |
| m.requires_grad_(True) | |
| trainable_params = [] | |
| if args.learning_rate_te is None or not args.train_text_encoder: | |
| for m in training_models: | |
| trainable_params.extend(m.parameters()) | |
| else: | |
| trainable_params = [ | |
| {"params": list(unet.parameters()), "lr": args.learning_rate}, | |
| {"params": list(text_encoder.parameters()), "lr": args.learning_rate_te}, | |
| ] | |
| # 学習に必要なクラスを準備する | |
| accelerator.print("prepare optimizer, data loader etc.") | |
| _, _, optimizer = train_util.get_optimizer(args, trainable_params=trainable_params) | |
| # dataloaderを準備する | |
| # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意 | |
| n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset_group, | |
| batch_size=1, | |
| shuffle=True, | |
| collate_fn=collator, | |
| num_workers=n_workers, | |
| persistent_workers=args.persistent_data_loader_workers, | |
| ) | |
| # 学習ステップ数を計算する | |
| if args.max_train_epochs is not None: | |
| args.max_train_steps = args.max_train_epochs * math.ceil( | |
| len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps | |
| ) | |
| accelerator.print( | |
| f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" | |
| ) | |
| # データセット側にも学習ステップを送信 | |
| train_dataset_group.set_max_train_steps(args.max_train_steps) | |
| # lr schedulerを用意する | |
| lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) | |
| # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする | |
| if args.full_fp16: | |
| assert ( | |
| args.mixed_precision == "fp16" | |
| ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" | |
| accelerator.print("enable full fp16 training.") | |
| unet.to(weight_dtype) | |
| text_encoder.to(weight_dtype) | |
| if args.deepspeed: | |
| if args.train_text_encoder: | |
| ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet, text_encoder=text_encoder) | |
| else: | |
| ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet) | |
| ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| ds_model, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| training_models = [ds_model] | |
| else: | |
| # acceleratorがなんかよろしくやってくれるらしい | |
| if args.train_text_encoder: | |
| unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, text_encoder, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| else: | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) | |
| # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする | |
| if args.full_fp16: | |
| train_util.patch_accelerator_for_fp16_training(accelerator) | |
| # resumeする | |
| train_util.resume_from_local_or_hf_if_specified(accelerator, args) | |
| # epoch数を計算する | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): | |
| args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 | |
| # 学習する | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| accelerator.print("running training / 学習開始") | |
| accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}") | |
| accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") | |
| accelerator.print(f" num epochs / epoch数: {num_train_epochs}") | |
| accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}") | |
| accelerator.print( | |
| f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" | |
| ) | |
| accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") | |
| accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") | |
| progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") | |
| global_step = 0 | |
| noise_scheduler = DDPMScheduler( | |
| beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False | |
| ) | |
| prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) | |
| if args.zero_terminal_snr: | |
| custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) | |
| if accelerator.is_main_process: | |
| init_kwargs = {} | |
| if args.wandb_run_name: | |
| init_kwargs["wandb"] = {"name": args.wandb_run_name} | |
| if args.log_tracker_config is not None: | |
| init_kwargs = toml.load(args.log_tracker_config) | |
| accelerator.init_trackers( | |
| "finetuning" if args.log_tracker_name is None else args.log_tracker_name, | |
| config=train_util.get_sanitized_config_or_none(args), | |
| init_kwargs=init_kwargs, | |
| ) | |
| # For --sample_at_first | |
| train_util.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) | |
| loss_recorder = train_util.LossRecorder() | |
| for epoch in range(num_train_epochs): | |
| accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") | |
| current_epoch.value = epoch + 1 | |
| for m in training_models: | |
| m.train() | |
| for step, batch in enumerate(train_dataloader): | |
| current_step.value = global_step | |
| with accelerator.accumulate(*training_models): | |
| with torch.no_grad(): | |
| if "latents" in batch and batch["latents"] is not None: | |
| latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) | |
| else: | |
| # latentに変換 | |
| latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(weight_dtype) | |
| latents = latents * 0.18215 | |
| b_size = latents.shape[0] | |
| with torch.set_grad_enabled(args.train_text_encoder): | |
| # Get the text embedding for conditioning | |
| if args.weighted_captions: | |
| encoder_hidden_states = get_weighted_text_embeddings( | |
| tokenizer, | |
| text_encoder, | |
| batch["captions"], | |
| accelerator.device, | |
| args.max_token_length // 75 if args.max_token_length else 1, | |
| clip_skip=args.clip_skip, | |
| ) | |
| else: | |
| input_ids = batch["input_ids"].to(accelerator.device) | |
| encoder_hidden_states = train_util.get_hidden_states( | |
| args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype | |
| ) | |
| # Sample noise, sample a random timestep for each image, and add noise to the latents, | |
| # with noise offset and/or multires noise if specified | |
| noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps( | |
| args, noise_scheduler, latents | |
| ) | |
| # Predict the noise residual | |
| with accelerator.autocast(): | |
| noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
| if args.v_parameterization: | |
| # v-parameterization training | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| target = noise | |
| if args.min_snr_gamma or args.scale_v_pred_loss_like_noise_pred or args.debiased_estimation_loss: | |
| # do not mean over batch dimension for snr weight or scale v-pred loss | |
| loss = train_util.conditional_loss( | |
| noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c | |
| ) | |
| loss = loss.mean([1, 2, 3]) | |
| if args.min_snr_gamma: | |
| loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) | |
| if args.scale_v_pred_loss_like_noise_pred: | |
| loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) | |
| if args.debiased_estimation_loss: | |
| loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization) | |
| loss = loss.mean() # mean over batch dimension | |
| else: | |
| loss = train_util.conditional_loss( | |
| noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c | |
| ) | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients and args.max_grad_norm != 0.0: | |
| params_to_clip = [] | |
| for m in training_models: | |
| params_to_clip.extend(m.parameters()) | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=True) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| train_util.sample_images( | |
| accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet | |
| ) | |
| # 指定ステップごとにモデルを保存 | |
| if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
| train_util.save_sd_model_on_epoch_end_or_stepwise( | |
| args, | |
| False, | |
| accelerator, | |
| src_path, | |
| save_stable_diffusion_format, | |
| use_safetensors, | |
| save_dtype, | |
| epoch, | |
| num_train_epochs, | |
| global_step, | |
| accelerator.unwrap_model(text_encoder), | |
| accelerator.unwrap_model(unet), | |
| vae, | |
| ) | |
| current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず | |
| if args.logging_dir is not None: | |
| logs = {"loss": current_loss} | |
| train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True) | |
| accelerator.log(logs, step=global_step) | |
| loss_recorder.add(epoch=epoch, step=step, loss=current_loss) | |
| avr_loss: float = loss_recorder.moving_average | |
| logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if args.logging_dir is not None: | |
| logs = {"loss/epoch": loss_recorder.moving_average} | |
| accelerator.log(logs, step=epoch + 1) | |
| accelerator.wait_for_everyone() | |
| if args.save_every_n_epochs is not None: | |
| if accelerator.is_main_process: | |
| src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
| train_util.save_sd_model_on_epoch_end_or_stepwise( | |
| args, | |
| True, | |
| accelerator, | |
| src_path, | |
| save_stable_diffusion_format, | |
| use_safetensors, | |
| save_dtype, | |
| epoch, | |
| num_train_epochs, | |
| global_step, | |
| accelerator.unwrap_model(text_encoder), | |
| accelerator.unwrap_model(unet), | |
| vae, | |
| ) | |
| train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) | |
| is_main_process = accelerator.is_main_process | |
| if is_main_process: | |
| unet = accelerator.unwrap_model(unet) | |
| text_encoder = accelerator.unwrap_model(text_encoder) | |
| accelerator.end_training() | |
| if is_main_process and (args.save_state or args.save_state_on_train_end): | |
| train_util.save_state_on_train_end(args, accelerator) | |
| del accelerator # この後メモリを使うのでこれは消す | |
| if is_main_process: | |
| src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path | |
| train_util.save_sd_model_on_train_end( | |
| args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae | |
| ) | |
| logger.info("model saved.") | |
| def setup_parser() -> argparse.ArgumentParser: | |
| parser = argparse.ArgumentParser() | |
| add_logging_arguments(parser) | |
| train_util.add_sd_models_arguments(parser) | |
| train_util.add_dataset_arguments(parser, False, True, True) | |
| train_util.add_training_arguments(parser, False) | |
| deepspeed_utils.add_deepspeed_arguments(parser) | |
| train_util.add_sd_saving_arguments(parser) | |
| train_util.add_optimizer_arguments(parser) | |
| config_util.add_config_arguments(parser) | |
| custom_train_functions.add_custom_train_arguments(parser) | |
| parser.add_argument( | |
| "--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する" | |
| ) | |
| parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する") | |
| parser.add_argument( | |
| "--learning_rate_te", | |
| type=float, | |
| default=None, | |
| help="learning rate for text encoder, default is same as unet / Text Encoderの学習率、デフォルトはunetと同じ", | |
| ) | |
| parser.add_argument( | |
| "--no_half_vae", | |
| action="store_true", | |
| help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", | |
| ) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = setup_parser() | |
| args = parser.parse_args() | |
| train_util.verify_command_line_training_args(args) | |
| args = train_util.read_config_from_file(args, parser) | |
| train(args) | |