Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
from deepface import DeepFace
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def predict_emotion(image):
|
7 |
+
# Convert Gradio image (PIL format) to an OpenCV image
|
8 |
+
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
9 |
+
|
10 |
+
# Analyze the emotion using DeepFace
|
11 |
+
result = DeepFace.analyze(img, actions=['emotion'])
|
12 |
+
|
13 |
+
# Get the dominant emotion
|
14 |
+
dominant_emotion = result[0]['dominant_emotion']
|
15 |
+
|
16 |
+
return dominant_emotion
|
17 |
+
|
18 |
+
# Define the Gradio interface using the new API
|
19 |
+
iface = gr.Interface(fn=predict_emotion,
|
20 |
+
inputs=gr.Image(type="pil"), # Updated gr.Image input
|
21 |
+
outputs="text", # Text output for dominant emotion
|
22 |
+
title="Real-time Facial Emotion Recognition",
|
23 |
+
description="Upload an image and get the predicted emotion")
|
24 |
+
|
25 |
+
# Launch the Gradio app
|
26 |
+
iface.launch(share=True)
|