Update mediSync/models/image_analyzer.py
Browse files- mediSync/models/image_analyzer.py +194 -194
mediSync/models/image_analyzer.py
CHANGED
@@ -1,194 +1,194 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from PIL import Image
|
6 |
-
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
7 |
-
|
8 |
-
|
9 |
-
class XRayImageAnalyzer:
|
10 |
-
"""
|
11 |
-
A class for analyzing medical X-ray images using pre-trained models from Hugging Face.
|
12 |
-
|
13 |
-
This analyzer uses the DeiT (Data-efficient image Transformers) model fine-tuned
|
14 |
-
on chest X-ray images to detect abnormalities.
|
15 |
-
"""
|
16 |
-
|
17 |
-
def __init__(
|
18 |
-
self, model_name="
|
19 |
-
):
|
20 |
-
"""
|
21 |
-
Initialize the X-ray image analyzer with a specific pre-trained model.
|
22 |
-
|
23 |
-
Args:
|
24 |
-
model_name (str): The Hugging Face model name to use
|
25 |
-
device (str, optional): Device to run the model on ('cuda' or 'cpu')
|
26 |
-
"""
|
27 |
-
self.logger = logging.getLogger(__name__)
|
28 |
-
|
29 |
-
# Determine device (CPU or GPU)
|
30 |
-
if device is None:
|
31 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
-
else:
|
33 |
-
self.device = device
|
34 |
-
|
35 |
-
self.logger.info(f"Using device: {self.device}")
|
36 |
-
|
37 |
-
# Load model and feature extractor
|
38 |
-
try:
|
39 |
-
self.feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
40 |
-
self.model = AutoModelForImageClassification.from_pretrained(model_name)
|
41 |
-
self.model.to(self.device)
|
42 |
-
self.model.eval() # Set to evaluation mode
|
43 |
-
self.logger.info(f"Successfully loaded model: {model_name}")
|
44 |
-
|
45 |
-
# Map labels to more informative descriptions
|
46 |
-
self.labels = self.model.config.id2label
|
47 |
-
|
48 |
-
except Exception as e:
|
49 |
-
self.logger.error(f"Failed to load model: {e}")
|
50 |
-
raise
|
51 |
-
|
52 |
-
def preprocess_image(self, image_path):
|
53 |
-
"""
|
54 |
-
Preprocess an X-ray image for model input.
|
55 |
-
|
56 |
-
Args:
|
57 |
-
image_path (str or PIL.Image): Path to image or PIL Image object
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
dict: Processed inputs ready for the model
|
61 |
-
"""
|
62 |
-
try:
|
63 |
-
# Load image if path is provided
|
64 |
-
if isinstance(image_path, str):
|
65 |
-
if not os.path.exists(image_path):
|
66 |
-
raise FileNotFoundError(f"Image file not found: {image_path}")
|
67 |
-
image = Image.open(image_path).convert("RGB")
|
68 |
-
else:
|
69 |
-
# Assume it's already a PIL Image
|
70 |
-
image = image_path.convert("RGB")
|
71 |
-
|
72 |
-
# Apply feature extraction
|
73 |
-
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
74 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
75 |
-
|
76 |
-
return inputs, image
|
77 |
-
|
78 |
-
except Exception as e:
|
79 |
-
self.logger.error(f"Error in preprocessing image: {e}")
|
80 |
-
raise
|
81 |
-
|
82 |
-
def analyze(self, image_path, threshold=0.5):
|
83 |
-
"""
|
84 |
-
Analyze an X-ray image and detect abnormalities.
|
85 |
-
|
86 |
-
Args:
|
87 |
-
image_path (str or PIL.Image): Path to the X-ray image or PIL Image object
|
88 |
-
threshold (float): Classification threshold for positive findings
|
89 |
-
|
90 |
-
Returns:
|
91 |
-
dict: Analysis results including:
|
92 |
-
- predictions: List of (label, probability) tuples
|
93 |
-
- primary_finding: The most likely abnormality
|
94 |
-
- has_abnormality: Boolean indicating if abnormalities were detected
|
95 |
-
- confidence: Confidence score for the primary finding
|
96 |
-
"""
|
97 |
-
try:
|
98 |
-
# Preprocess the image
|
99 |
-
inputs, original_image = self.preprocess_image(image_path)
|
100 |
-
|
101 |
-
# Run inference
|
102 |
-
with torch.no_grad():
|
103 |
-
outputs = self.model(**inputs)
|
104 |
-
|
105 |
-
# Process predictions
|
106 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
|
107 |
-
probabilities = probabilities.cpu().numpy()
|
108 |
-
|
109 |
-
# Get predictions sorted by probability
|
110 |
-
predictions = []
|
111 |
-
for i, p in enumerate(probabilities):
|
112 |
-
label = self.labels[i]
|
113 |
-
predictions.append((label, float(p)))
|
114 |
-
|
115 |
-
# Sort by probability (descending)
|
116 |
-
predictions.sort(key=lambda x: x[1], reverse=True)
|
117 |
-
|
118 |
-
# Determine if there's an abnormality and the primary finding
|
119 |
-
normal_idx = [
|
120 |
-
i
|
121 |
-
for i, (label, _) in enumerate(predictions)
|
122 |
-
if label.lower() == "normal" or label.lower() == "no finding"
|
123 |
-
]
|
124 |
-
|
125 |
-
if normal_idx and predictions[normal_idx[0]][1] > threshold:
|
126 |
-
has_abnormality = False
|
127 |
-
primary_finding = "No abnormalities detected"
|
128 |
-
confidence = predictions[normal_idx[0]][1]
|
129 |
-
else:
|
130 |
-
has_abnormality = True
|
131 |
-
primary_finding = predictions[0][0]
|
132 |
-
confidence = predictions[0][1]
|
133 |
-
|
134 |
-
return {
|
135 |
-
"predictions": predictions,
|
136 |
-
"primary_finding": primary_finding,
|
137 |
-
"has_abnormality": has_abnormality,
|
138 |
-
"confidence": confidence,
|
139 |
-
}
|
140 |
-
|
141 |
-
except Exception as e:
|
142 |
-
self.logger.error(f"Error analyzing image: {e}")
|
143 |
-
raise
|
144 |
-
|
145 |
-
def get_explanation(self, results):
|
146 |
-
"""
|
147 |
-
Generate a human-readable explanation of the analysis results.
|
148 |
-
|
149 |
-
Args:
|
150 |
-
results (dict): The results returned by the analyze method
|
151 |
-
|
152 |
-
Returns:
|
153 |
-
str: A text explanation of the findings
|
154 |
-
"""
|
155 |
-
if not results["has_abnormality"]:
|
156 |
-
explanation = (
|
157 |
-
f"The X-ray appears normal with {results['confidence']:.1%} confidence."
|
158 |
-
)
|
159 |
-
else:
|
160 |
-
explanation = (
|
161 |
-
f"The primary finding is {results['primary_finding']} "
|
162 |
-
f"with {results['confidence']:.1%} confidence.\n\n"
|
163 |
-
f"Other potential findings include:\n"
|
164 |
-
)
|
165 |
-
|
166 |
-
# Add top 3 other findings (skipping the first one which is primary)
|
167 |
-
for label, prob in results["predictions"][1:4]:
|
168 |
-
if prob > 0.05: # Only include if probability > 5%
|
169 |
-
explanation += f"- {label}: {prob:.1%}\n"
|
170 |
-
|
171 |
-
return explanation
|
172 |
-
|
173 |
-
|
174 |
-
# Example usage
|
175 |
-
if __name__ == "__main__":
|
176 |
-
# Set up logging
|
177 |
-
logging.basicConfig(level=logging.INFO)
|
178 |
-
|
179 |
-
# Test on a sample image if available
|
180 |
-
analyzer = XRayImageAnalyzer()
|
181 |
-
|
182 |
-
# Check if sample data directory exists
|
183 |
-
sample_dir = "../data/sample"
|
184 |
-
if os.path.exists(sample_dir) and os.listdir(sample_dir):
|
185 |
-
sample_image = os.path.join(sample_dir, os.listdir(sample_dir)[0])
|
186 |
-
print(f"Analyzing sample image: {sample_image}")
|
187 |
-
|
188 |
-
results = analyzer.analyze(sample_image)
|
189 |
-
explanation = analyzer.get_explanation(results)
|
190 |
-
|
191 |
-
print("\nAnalysis Results:")
|
192 |
-
print(explanation)
|
193 |
-
else:
|
194 |
-
print("No sample images found in ../data/sample directory")
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
7 |
+
|
8 |
+
|
9 |
+
class XRayImageAnalyzer:
|
10 |
+
"""
|
11 |
+
A class for analyzing medical X-ray images using pre-trained models from Hugging Face.
|
12 |
+
|
13 |
+
This analyzer uses the DeiT (Data-efficient image Transformers) model fine-tuned
|
14 |
+
on chest X-ray images to detect abnormalities.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self, model_name="codewithdark/vit-chest-xray", device=None
|
19 |
+
):
|
20 |
+
"""
|
21 |
+
Initialize the X-ray image analyzer with a specific pre-trained model.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_name (str): The Hugging Face model name to use
|
25 |
+
device (str, optional): Device to run the model on ('cuda' or 'cpu')
|
26 |
+
"""
|
27 |
+
self.logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
# Determine device (CPU or GPU)
|
30 |
+
if device is None:
|
31 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
else:
|
33 |
+
self.device = device
|
34 |
+
|
35 |
+
self.logger.info(f"Using device: {self.device}")
|
36 |
+
|
37 |
+
# Load model and feature extractor
|
38 |
+
try:
|
39 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
40 |
+
self.model = AutoModelForImageClassification.from_pretrained(model_name)
|
41 |
+
self.model.to(self.device)
|
42 |
+
self.model.eval() # Set to evaluation mode
|
43 |
+
self.logger.info(f"Successfully loaded model: {model_name}")
|
44 |
+
|
45 |
+
# Map labels to more informative descriptions
|
46 |
+
self.labels = self.model.config.id2label
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
self.logger.error(f"Failed to load model: {e}")
|
50 |
+
raise
|
51 |
+
|
52 |
+
def preprocess_image(self, image_path):
|
53 |
+
"""
|
54 |
+
Preprocess an X-ray image for model input.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
image_path (str or PIL.Image): Path to image or PIL Image object
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
dict: Processed inputs ready for the model
|
61 |
+
"""
|
62 |
+
try:
|
63 |
+
# Load image if path is provided
|
64 |
+
if isinstance(image_path, str):
|
65 |
+
if not os.path.exists(image_path):
|
66 |
+
raise FileNotFoundError(f"Image file not found: {image_path}")
|
67 |
+
image = Image.open(image_path).convert("RGB")
|
68 |
+
else:
|
69 |
+
# Assume it's already a PIL Image
|
70 |
+
image = image_path.convert("RGB")
|
71 |
+
|
72 |
+
# Apply feature extraction
|
73 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
74 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
75 |
+
|
76 |
+
return inputs, image
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
self.logger.error(f"Error in preprocessing image: {e}")
|
80 |
+
raise
|
81 |
+
|
82 |
+
def analyze(self, image_path, threshold=0.5):
|
83 |
+
"""
|
84 |
+
Analyze an X-ray image and detect abnormalities.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
image_path (str or PIL.Image): Path to the X-ray image or PIL Image object
|
88 |
+
threshold (float): Classification threshold for positive findings
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
dict: Analysis results including:
|
92 |
+
- predictions: List of (label, probability) tuples
|
93 |
+
- primary_finding: The most likely abnormality
|
94 |
+
- has_abnormality: Boolean indicating if abnormalities were detected
|
95 |
+
- confidence: Confidence score for the primary finding
|
96 |
+
"""
|
97 |
+
try:
|
98 |
+
# Preprocess the image
|
99 |
+
inputs, original_image = self.preprocess_image(image_path)
|
100 |
+
|
101 |
+
# Run inference
|
102 |
+
with torch.no_grad():
|
103 |
+
outputs = self.model(**inputs)
|
104 |
+
|
105 |
+
# Process predictions
|
106 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
|
107 |
+
probabilities = probabilities.cpu().numpy()
|
108 |
+
|
109 |
+
# Get predictions sorted by probability
|
110 |
+
predictions = []
|
111 |
+
for i, p in enumerate(probabilities):
|
112 |
+
label = self.labels[i]
|
113 |
+
predictions.append((label, float(p)))
|
114 |
+
|
115 |
+
# Sort by probability (descending)
|
116 |
+
predictions.sort(key=lambda x: x[1], reverse=True)
|
117 |
+
|
118 |
+
# Determine if there's an abnormality and the primary finding
|
119 |
+
normal_idx = [
|
120 |
+
i
|
121 |
+
for i, (label, _) in enumerate(predictions)
|
122 |
+
if label.lower() == "normal" or label.lower() == "no finding"
|
123 |
+
]
|
124 |
+
|
125 |
+
if normal_idx and predictions[normal_idx[0]][1] > threshold:
|
126 |
+
has_abnormality = False
|
127 |
+
primary_finding = "No abnormalities detected"
|
128 |
+
confidence = predictions[normal_idx[0]][1]
|
129 |
+
else:
|
130 |
+
has_abnormality = True
|
131 |
+
primary_finding = predictions[0][0]
|
132 |
+
confidence = predictions[0][1]
|
133 |
+
|
134 |
+
return {
|
135 |
+
"predictions": predictions,
|
136 |
+
"primary_finding": primary_finding,
|
137 |
+
"has_abnormality": has_abnormality,
|
138 |
+
"confidence": confidence,
|
139 |
+
}
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
self.logger.error(f"Error analyzing image: {e}")
|
143 |
+
raise
|
144 |
+
|
145 |
+
def get_explanation(self, results):
|
146 |
+
"""
|
147 |
+
Generate a human-readable explanation of the analysis results.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
results (dict): The results returned by the analyze method
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
str: A text explanation of the findings
|
154 |
+
"""
|
155 |
+
if not results["has_abnormality"]:
|
156 |
+
explanation = (
|
157 |
+
f"The X-ray appears normal with {results['confidence']:.1%} confidence."
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
explanation = (
|
161 |
+
f"The primary finding is {results['primary_finding']} "
|
162 |
+
f"with {results['confidence']:.1%} confidence.\n\n"
|
163 |
+
f"Other potential findings include:\n"
|
164 |
+
)
|
165 |
+
|
166 |
+
# Add top 3 other findings (skipping the first one which is primary)
|
167 |
+
for label, prob in results["predictions"][1:4]:
|
168 |
+
if prob > 0.05: # Only include if probability > 5%
|
169 |
+
explanation += f"- {label}: {prob:.1%}\n"
|
170 |
+
|
171 |
+
return explanation
|
172 |
+
|
173 |
+
|
174 |
+
# Example usage
|
175 |
+
if __name__ == "__main__":
|
176 |
+
# Set up logging
|
177 |
+
logging.basicConfig(level=logging.INFO)
|
178 |
+
|
179 |
+
# Test on a sample image if available
|
180 |
+
analyzer = XRayImageAnalyzer()
|
181 |
+
|
182 |
+
# Check if sample data directory exists
|
183 |
+
sample_dir = "../data/sample"
|
184 |
+
if os.path.exists(sample_dir) and os.listdir(sample_dir):
|
185 |
+
sample_image = os.path.join(sample_dir, os.listdir(sample_dir)[0])
|
186 |
+
print(f"Analyzing sample image: {sample_image}")
|
187 |
+
|
188 |
+
results = analyzer.analyze(sample_image)
|
189 |
+
explanation = analyzer.get_explanation(results)
|
190 |
+
|
191 |
+
print("\nAnalysis Results:")
|
192 |
+
print(explanation)
|
193 |
+
else:
|
194 |
+
print("No sample images found in ../data/sample directory")
|