Upload 21 files
Browse files- mediSync/__init__.py +17 -0
- mediSync/__pycache__/__init__.cpython-311.pyc +0 -0
- mediSync/__pycache__/app.cpython-311.pyc +0 -0
- mediSync/app.py +560 -0
- mediSync/data/sample/sample_info.txt +22 -0
- mediSync/models/__init__.py +16 -0
- mediSync/models/__pycache__/__init__.cpython-311.pyc +0 -0
- mediSync/models/__pycache__/image_analyzer.cpython-311.pyc +0 -0
- mediSync/models/__pycache__/multimodal_fusion.cpython-311.pyc +0 -0
- mediSync/models/__pycache__/text_analyzer.cpython-311.pyc +0 -0
- mediSync/models/image_analyzer.py +194 -0
- mediSync/models/multimodal_fusion.py +631 -0
- mediSync/models/text_analyzer.py +476 -0
- mediSync/utils/__init__.py +38 -0
- mediSync/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- mediSync/utils/__pycache__/download_samples.cpython-311.pyc +0 -0
- mediSync/utils/__pycache__/preprocessing.cpython-311.pyc +0 -0
- mediSync/utils/__pycache__/visualization.cpython-311.pyc +0 -0
- mediSync/utils/download_samples.py +135 -0
- mediSync/utils/preprocessing.py +262 -0
- mediSync/utils/visualization.py +516 -0
mediSync/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MediSync: Multi-Modal Medical Analysis System
|
3 |
+
==============================================
|
4 |
+
|
5 |
+
A healthcare solution that combines X-ray image analysis with patient report text processing
|
6 |
+
to provide comprehensive medical insights.
|
7 |
+
|
8 |
+
This package contains the following modules:
|
9 |
+
- models: Image and text analysis models, along with multimodal fusion
|
10 |
+
- utils: Utility functions for preprocessing and visualization
|
11 |
+
- app: Main application with Gradio interface
|
12 |
+
|
13 |
+
Author: AI Development Team
|
14 |
+
License: MIT
|
15 |
+
"""
|
16 |
+
|
17 |
+
__version__ = "0.1.0"
|
mediSync/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (712 Bytes). View file
|
|
mediSync/__pycache__/app.cpython-311.pyc
ADDED
Binary file (25.9 kB). View file
|
|
mediSync/app.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import tempfile
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
# Add parent directory to path
|
12 |
+
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
13 |
+
sys.path.append(parent_dir)
|
14 |
+
|
15 |
+
# Import our modules
|
16 |
+
from models.multimodal_fusion import MultimodalFusion
|
17 |
+
from utils.preprocessing import enhance_xray_image, normalize_report_text
|
18 |
+
from utils.visualization import (
|
19 |
+
plot_image_prediction,
|
20 |
+
plot_multimodal_results,
|
21 |
+
plot_report_entities,
|
22 |
+
)
|
23 |
+
|
24 |
+
# Set up logging
|
25 |
+
logging.basicConfig(
|
26 |
+
level=logging.INFO,
|
27 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
28 |
+
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
|
29 |
+
)
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
# Create temporary directory for sample data if it doesn't exist
|
33 |
+
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
|
34 |
+
|
35 |
+
|
36 |
+
class MediSyncApp:
|
37 |
+
"""
|
38 |
+
Main application class for the MediSync multi-modal medical analysis system.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self):
|
42 |
+
"""Initialize the application and load models."""
|
43 |
+
self.logger = logging.getLogger(__name__)
|
44 |
+
self.logger.info("Initializing MediSync application")
|
45 |
+
|
46 |
+
# Initialize models with None for lazy loading
|
47 |
+
self.fusion_model = None
|
48 |
+
self.image_model = None
|
49 |
+
self.text_model = None
|
50 |
+
|
51 |
+
def load_models(self):
|
52 |
+
"""
|
53 |
+
Load models if not already loaded.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
bool: True if models loaded successfully, False otherwise
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
if self.fusion_model is None:
|
60 |
+
self.logger.info("Loading models...")
|
61 |
+
self.fusion_model = MultimodalFusion()
|
62 |
+
self.image_model = self.fusion_model.image_analyzer
|
63 |
+
self.text_model = self.fusion_model.text_analyzer
|
64 |
+
self.logger.info("Models loaded successfully")
|
65 |
+
return True
|
66 |
+
|
67 |
+
except Exception as e:
|
68 |
+
self.logger.error(f"Error loading models: {e}")
|
69 |
+
return False
|
70 |
+
|
71 |
+
def analyze_image(self, image):
|
72 |
+
"""
|
73 |
+
Analyze a medical image.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
image: Image file uploaded through Gradio
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
tuple: (image, image_results_html, plot_as_html)
|
80 |
+
"""
|
81 |
+
try:
|
82 |
+
# Ensure models are loaded
|
83 |
+
if not self.load_models() or self.image_model is None:
|
84 |
+
return image, "Error: Models not loaded properly.", None
|
85 |
+
|
86 |
+
# Save uploaded image to a temporary file
|
87 |
+
temp_dir = tempfile.mkdtemp()
|
88 |
+
temp_path = os.path.join(temp_dir, "upload.png")
|
89 |
+
|
90 |
+
if isinstance(image, str):
|
91 |
+
# Copy the file if it's a path
|
92 |
+
from shutil import copyfile
|
93 |
+
|
94 |
+
copyfile(image, temp_path)
|
95 |
+
else:
|
96 |
+
# Save if it's a Gradio UploadButton image
|
97 |
+
image.save(temp_path)
|
98 |
+
|
99 |
+
# Run image analysis
|
100 |
+
self.logger.info(f"Analyzing image: {temp_path}")
|
101 |
+
results = self.image_model.analyze(temp_path)
|
102 |
+
|
103 |
+
# Create visualization
|
104 |
+
fig = plot_image_prediction(
|
105 |
+
image,
|
106 |
+
results.get("predictions", []),
|
107 |
+
f"Primary Finding: {results.get('primary_finding', 'Unknown')}",
|
108 |
+
)
|
109 |
+
|
110 |
+
# Convert to HTML for display
|
111 |
+
plot_html = self.fig_to_html(fig)
|
112 |
+
|
113 |
+
# Format results as HTML
|
114 |
+
html_result = f"""
|
115 |
+
<h2>X-ray Analysis Results</h2>
|
116 |
+
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
117 |
+
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
118 |
+
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
119 |
+
|
120 |
+
<h3>Top Predictions:</h3>
|
121 |
+
<ul>
|
122 |
+
"""
|
123 |
+
|
124 |
+
# Add top 5 predictions
|
125 |
+
for label, prob in results.get("predictions", [])[:5]:
|
126 |
+
html_result += f"<li>{label}: {prob:.1%}</li>"
|
127 |
+
|
128 |
+
html_result += "</ul>"
|
129 |
+
|
130 |
+
# Add explanation
|
131 |
+
explanation = self.image_model.get_explanation(results)
|
132 |
+
html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"
|
133 |
+
|
134 |
+
return image, html_result, plot_html
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
self.logger.error(f"Error in image analysis: {e}")
|
138 |
+
return image, f"Error analyzing image: {str(e)}", None
|
139 |
+
|
140 |
+
def analyze_text(self, text):
|
141 |
+
"""
|
142 |
+
Analyze a medical report text.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
text: Report text input through Gradio
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
tuple: (text, text_results_html, entities_plot_html)
|
149 |
+
"""
|
150 |
+
try:
|
151 |
+
# Ensure models are loaded
|
152 |
+
if not self.load_models() or self.text_model is None:
|
153 |
+
return text, "Error: Models not loaded properly.", None
|
154 |
+
|
155 |
+
# Check for empty text
|
156 |
+
if not text or len(text.strip()) < 10:
|
157 |
+
return (
|
158 |
+
text,
|
159 |
+
"Error: Please enter a valid medical report text (at least 10 characters).",
|
160 |
+
None,
|
161 |
+
)
|
162 |
+
|
163 |
+
# Normalize text
|
164 |
+
normalized_text = normalize_report_text(text)
|
165 |
+
|
166 |
+
# Run text analysis
|
167 |
+
self.logger.info("Analyzing medical report text")
|
168 |
+
results = self.text_model.analyze(normalized_text)
|
169 |
+
|
170 |
+
# Get entities and create visualization
|
171 |
+
entities = results.get("entities", {})
|
172 |
+
fig = plot_report_entities(normalized_text, entities)
|
173 |
+
|
174 |
+
# Convert to HTML for display
|
175 |
+
entities_plot_html = self.fig_to_html(fig)
|
176 |
+
|
177 |
+
# Format results as HTML
|
178 |
+
html_result = f"""
|
179 |
+
<h2>Medical Report Analysis Results</h2>
|
180 |
+
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
181 |
+
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
182 |
+
<p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
|
183 |
+
|
184 |
+
<h3>Key Findings:</h3>
|
185 |
+
<ul>
|
186 |
+
"""
|
187 |
+
|
188 |
+
# Add findings
|
189 |
+
findings = results.get("findings", [])
|
190 |
+
if findings:
|
191 |
+
for finding in findings:
|
192 |
+
html_result += f"<li>{finding}</li>"
|
193 |
+
else:
|
194 |
+
html_result += "<li>No specific findings detailed.</li>"
|
195 |
+
|
196 |
+
html_result += "</ul>"
|
197 |
+
|
198 |
+
# Add entities
|
199 |
+
html_result += "<h3>Extracted Medical Entities:</h3>"
|
200 |
+
|
201 |
+
for category, items in entities.items():
|
202 |
+
if items:
|
203 |
+
html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"
|
204 |
+
|
205 |
+
# Add follow-up recommendations
|
206 |
+
html_result += "<h3>Follow-up Recommendations:</h3><ul>"
|
207 |
+
followups = results.get("followup_recommendations", [])
|
208 |
+
|
209 |
+
if followups:
|
210 |
+
for rec in followups:
|
211 |
+
html_result += f"<li>{rec}</li>"
|
212 |
+
else:
|
213 |
+
html_result += "<li>No specific follow-up recommendations.</li>"
|
214 |
+
|
215 |
+
html_result += "</ul>"
|
216 |
+
|
217 |
+
return text, html_result, entities_plot_html
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
self.logger.error(f"Error in text analysis: {e}")
|
221 |
+
return text, f"Error analyzing text: {str(e)}", None
|
222 |
+
|
223 |
+
def analyze_multimodal(self, image, text):
|
224 |
+
"""
|
225 |
+
Perform multimodal analysis of image and text.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
image: Image file uploaded through Gradio
|
229 |
+
text: Report text input through Gradio
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
tuple: (results_html, multimodal_plot_html)
|
233 |
+
"""
|
234 |
+
try:
|
235 |
+
# Ensure models are loaded
|
236 |
+
if not self.load_models() or self.fusion_model is None:
|
237 |
+
return "Error: Models not loaded properly.", None
|
238 |
+
|
239 |
+
# Check for empty inputs
|
240 |
+
if image is None:
|
241 |
+
return "Error: Please upload an X-ray image for analysis.", None
|
242 |
+
|
243 |
+
if not text or len(text.strip()) < 10:
|
244 |
+
return (
|
245 |
+
"Error: Please enter a valid medical report text (at least 10 characters).",
|
246 |
+
None,
|
247 |
+
)
|
248 |
+
|
249 |
+
# Save uploaded image to a temporary file
|
250 |
+
temp_dir = tempfile.mkdtemp()
|
251 |
+
temp_path = os.path.join(temp_dir, "upload.png")
|
252 |
+
|
253 |
+
if isinstance(image, str):
|
254 |
+
# Copy the file if it's a path
|
255 |
+
from shutil import copyfile
|
256 |
+
|
257 |
+
copyfile(image, temp_path)
|
258 |
+
else:
|
259 |
+
# Save if it's a Gradio UploadButton image
|
260 |
+
image.save(temp_path)
|
261 |
+
|
262 |
+
# Normalize text
|
263 |
+
normalized_text = normalize_report_text(text)
|
264 |
+
|
265 |
+
# Run multimodal analysis
|
266 |
+
self.logger.info("Performing multimodal analysis")
|
267 |
+
results = self.fusion_model.analyze(temp_path, normalized_text)
|
268 |
+
|
269 |
+
# Create visualization
|
270 |
+
fig = plot_multimodal_results(results, image, text)
|
271 |
+
|
272 |
+
# Convert to HTML for display
|
273 |
+
plot_html = self.fig_to_html(fig)
|
274 |
+
|
275 |
+
# Generate explanation
|
276 |
+
explanation = self.fusion_model.get_explanation(results)
|
277 |
+
|
278 |
+
# Format results as HTML
|
279 |
+
html_result = f"""
|
280 |
+
<h2>Multimodal Medical Analysis Results</h2>
|
281 |
+
|
282 |
+
<h3>Overview</h3>
|
283 |
+
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
284 |
+
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
285 |
+
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
286 |
+
<p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>
|
287 |
+
|
288 |
+
<h3>Detailed Findings</h3>
|
289 |
+
<ul>
|
290 |
+
"""
|
291 |
+
|
292 |
+
# Add findings
|
293 |
+
findings = results.get("findings", [])
|
294 |
+
if findings:
|
295 |
+
for finding in findings:
|
296 |
+
html_result += f"<li>{finding}</li>"
|
297 |
+
else:
|
298 |
+
html_result += "<li>No specific findings detailed.</li>"
|
299 |
+
|
300 |
+
html_result += "</ul>"
|
301 |
+
|
302 |
+
# Add follow-up recommendations
|
303 |
+
html_result += "<h3>Recommended Follow-up</h3><ul>"
|
304 |
+
followups = results.get("followup_recommendations", [])
|
305 |
+
|
306 |
+
if followups:
|
307 |
+
for rec in followups:
|
308 |
+
html_result += f"<li>{rec}</li>"
|
309 |
+
else:
|
310 |
+
html_result += (
|
311 |
+
"<li>No specific follow-up recommendations provided.</li>"
|
312 |
+
)
|
313 |
+
|
314 |
+
html_result += "</ul>"
|
315 |
+
|
316 |
+
# Add confidence note
|
317 |
+
confidence = results.get("severity", {}).get("confidence", 0)
|
318 |
+
html_result += f"""
|
319 |
+
<p><em>Note: This analysis has a confidence level of {confidence:.0%}.
|
320 |
+
Please consult with healthcare professionals for official diagnosis.</em></p>
|
321 |
+
"""
|
322 |
+
|
323 |
+
return html_result, plot_html
|
324 |
+
|
325 |
+
except Exception as e:
|
326 |
+
self.logger.error(f"Error in multimodal analysis: {e}")
|
327 |
+
return f"Error in multimodal analysis: {str(e)}", None
|
328 |
+
|
329 |
+
def enhance_image(self, image):
|
330 |
+
"""
|
331 |
+
Enhance X-ray image contrast.
|
332 |
+
|
333 |
+
Args:
|
334 |
+
image: Image file uploaded through Gradio
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
PIL.Image: Enhanced image
|
338 |
+
"""
|
339 |
+
try:
|
340 |
+
if image is None:
|
341 |
+
return None
|
342 |
+
|
343 |
+
# Save uploaded image to a temporary file
|
344 |
+
temp_dir = tempfile.mkdtemp()
|
345 |
+
temp_path = os.path.join(temp_dir, "upload.png")
|
346 |
+
|
347 |
+
if isinstance(image, str):
|
348 |
+
# Copy the file if it's a path
|
349 |
+
from shutil import copyfile
|
350 |
+
|
351 |
+
copyfile(image, temp_path)
|
352 |
+
else:
|
353 |
+
# Save if it's a Gradio UploadButton image
|
354 |
+
image.save(temp_path)
|
355 |
+
|
356 |
+
# Enhance image
|
357 |
+
self.logger.info(f"Enhancing image: {temp_path}")
|
358 |
+
output_path = os.path.join(temp_dir, "enhanced.png")
|
359 |
+
enhance_xray_image(temp_path, output_path)
|
360 |
+
|
361 |
+
# Load enhanced image
|
362 |
+
enhanced = Image.open(output_path)
|
363 |
+
return enhanced
|
364 |
+
|
365 |
+
except Exception as e:
|
366 |
+
self.logger.error(f"Error enhancing image: {e}")
|
367 |
+
return image # Return original image on error
|
368 |
+
|
369 |
+
def fig_to_html(self, fig):
|
370 |
+
"""Convert matplotlib figure to HTML for display in Gradio."""
|
371 |
+
try:
|
372 |
+
import base64
|
373 |
+
import io
|
374 |
+
|
375 |
+
buf = io.BytesIO()
|
376 |
+
fig.savefig(buf, format="png", bbox_inches="tight")
|
377 |
+
buf.seek(0)
|
378 |
+
img_str = base64.b64encode(buf.read()).decode("utf-8")
|
379 |
+
plt.close(fig)
|
380 |
+
|
381 |
+
return f'<img src="data:image/png;base64,{img_str}" alt="Analysis Plot">'
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
self.logger.error(f"Error converting figure to HTML: {e}")
|
385 |
+
return "<p>Error displaying visualization.</p>"
|
386 |
+
|
387 |
+
|
388 |
+
def create_interface():
|
389 |
+
"""Create and launch the Gradio interface."""
|
390 |
+
|
391 |
+
app = MediSyncApp()
|
392 |
+
|
393 |
+
# Example medical report for demo
|
394 |
+
example_report = """
|
395 |
+
CHEST X-RAY EXAMINATION
|
396 |
+
|
397 |
+
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
398 |
+
|
399 |
+
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
400 |
+
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
401 |
+
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
402 |
+
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
403 |
+
|
404 |
+
IMPRESSION:
|
405 |
+
1. Mild cardiomegaly.
|
406 |
+
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
407 |
+
3. No acute pulmonary parenchymal abnormality.
|
408 |
+
|
409 |
+
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
410 |
+
"""
|
411 |
+
|
412 |
+
# Get sample image path if available
|
413 |
+
sample_images_dir = Path(parent_dir) / "data" / "sample"
|
414 |
+
sample_images = list(sample_images_dir.glob("*.png")) + list(
|
415 |
+
sample_images_dir.glob("*.jpg")
|
416 |
+
)
|
417 |
+
|
418 |
+
sample_image_path = None
|
419 |
+
if sample_images:
|
420 |
+
sample_image_path = str(sample_images[0])
|
421 |
+
|
422 |
+
# Define interface
|
423 |
+
with gr.Blocks(
|
424 |
+
title="MediSync: Multi-Modal Medical Analysis System", theme=gr.themes.Soft()
|
425 |
+
) as interface:
|
426 |
+
gr.Markdown("""
|
427 |
+
# MediSync: Multi-Modal Medical Analysis System
|
428 |
+
|
429 |
+
This AI-powered healthcare solution combines X-ray image analysis with patient report text processing
|
430 |
+
to provide comprehensive medical insights.
|
431 |
+
|
432 |
+
## How to Use
|
433 |
+
1. Upload a chest X-ray image
|
434 |
+
2. Enter the corresponding medical report text
|
435 |
+
3. Choose the analysis type: image-only, text-only, or multimodal (combined)
|
436 |
+
""")
|
437 |
+
|
438 |
+
with gr.Tab("Multimodal Analysis"):
|
439 |
+
with gr.Row():
|
440 |
+
with gr.Column():
|
441 |
+
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil")
|
442 |
+
multi_img_enhance = gr.Button("Enhance Image")
|
443 |
+
|
444 |
+
multi_text_input = gr.Textbox(
|
445 |
+
label="Enter Medical Report Text",
|
446 |
+
placeholder="Enter the radiologist's report text here...",
|
447 |
+
lines=10,
|
448 |
+
value=example_report if sample_image_path is None else None,
|
449 |
+
)
|
450 |
+
|
451 |
+
multi_analyze_btn = gr.Button(
|
452 |
+
"Analyze Image & Text", variant="primary"
|
453 |
+
)
|
454 |
+
|
455 |
+
with gr.Column():
|
456 |
+
multi_results = gr.HTML(label="Analysis Results")
|
457 |
+
multi_plot = gr.HTML(label="Visualization")
|
458 |
+
|
459 |
+
# Set up examples if sample image exists
|
460 |
+
if sample_image_path:
|
461 |
+
gr.Examples(
|
462 |
+
examples=[[sample_image_path, example_report]],
|
463 |
+
inputs=[multi_img_input, multi_text_input],
|
464 |
+
label="Example X-ray and Report",
|
465 |
+
)
|
466 |
+
|
467 |
+
with gr.Tab("Image Analysis"):
|
468 |
+
with gr.Row():
|
469 |
+
with gr.Column():
|
470 |
+
img_input = gr.Image(label="Upload X-ray Image", type="pil")
|
471 |
+
img_enhance = gr.Button("Enhance Image")
|
472 |
+
img_analyze_btn = gr.Button("Analyze Image", variant="primary")
|
473 |
+
|
474 |
+
with gr.Column():
|
475 |
+
img_output = gr.Image(label="Processed Image")
|
476 |
+
img_results = gr.HTML(label="Analysis Results")
|
477 |
+
img_plot = gr.HTML(label="Visualization")
|
478 |
+
|
479 |
+
# Set up example if sample image exists
|
480 |
+
if sample_image_path:
|
481 |
+
gr.Examples(
|
482 |
+
examples=[[sample_image_path]],
|
483 |
+
inputs=[img_input],
|
484 |
+
label="Example X-ray Image",
|
485 |
+
)
|
486 |
+
|
487 |
+
with gr.Tab("Text Analysis"):
|
488 |
+
with gr.Row():
|
489 |
+
with gr.Column():
|
490 |
+
text_input = gr.Textbox(
|
491 |
+
label="Enter Medical Report Text",
|
492 |
+
placeholder="Enter the radiologist's report text here...",
|
493 |
+
lines=10,
|
494 |
+
value=example_report,
|
495 |
+
)
|
496 |
+
text_analyze_btn = gr.Button("Analyze Text", variant="primary")
|
497 |
+
|
498 |
+
with gr.Column():
|
499 |
+
text_output = gr.Textbox(label="Processed Text")
|
500 |
+
text_results = gr.HTML(label="Analysis Results")
|
501 |
+
text_plot = gr.HTML(label="Entity Visualization")
|
502 |
+
|
503 |
+
# Set up example
|
504 |
+
gr.Examples(
|
505 |
+
examples=[[example_report]],
|
506 |
+
inputs=[text_input],
|
507 |
+
label="Example Medical Report",
|
508 |
+
)
|
509 |
+
|
510 |
+
with gr.Tab("About"):
|
511 |
+
gr.Markdown("""
|
512 |
+
## About MediSync
|
513 |
+
|
514 |
+
MediSync is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
515 |
+
|
516 |
+
### Key Features
|
517 |
+
|
518 |
+
- **X-ray Image Analysis**: Detects abnormalities in chest X-rays using pre-trained vision models
|
519 |
+
- **Medical Report Processing**: Extracts key information from patient reports using NLP models
|
520 |
+
- **Multi-modal Integration**: Combines insights from both image and text data for more accurate analysis
|
521 |
+
|
522 |
+
### Models Used
|
523 |
+
|
524 |
+
- **X-ray Analysis**: facebook/deit-base-patch16-224-medical-cxr
|
525 |
+
- **Medical Text Analysis**: medicalai/ClinicalBERT
|
526 |
+
|
527 |
+
### Important Disclaimer
|
528 |
+
|
529 |
+
This tool is for educational and research purposes only. It is not intended to provide medical advice or replace professional healthcare. Always consult with qualified healthcare providers for medical decisions.
|
530 |
+
""")
|
531 |
+
|
532 |
+
# Set up event handlers
|
533 |
+
multi_img_enhance.click(
|
534 |
+
app.enhance_image, inputs=multi_img_input, outputs=multi_img_input
|
535 |
+
)
|
536 |
+
multi_analyze_btn.click(
|
537 |
+
app.analyze_multimodal,
|
538 |
+
inputs=[multi_img_input, multi_text_input],
|
539 |
+
outputs=[multi_results, multi_plot],
|
540 |
+
)
|
541 |
+
|
542 |
+
img_enhance.click(app.enhance_image, inputs=img_input, outputs=img_output)
|
543 |
+
img_analyze_btn.click(
|
544 |
+
app.analyze_image,
|
545 |
+
inputs=img_input,
|
546 |
+
outputs=[img_output, img_results, img_plot],
|
547 |
+
)
|
548 |
+
|
549 |
+
text_analyze_btn.click(
|
550 |
+
app.analyze_text,
|
551 |
+
inputs=text_input,
|
552 |
+
outputs=[text_output, text_results, text_plot],
|
553 |
+
)
|
554 |
+
|
555 |
+
# Run the interface
|
556 |
+
interface.launch()
|
557 |
+
|
558 |
+
|
559 |
+
if __name__ == "__main__":
|
560 |
+
create_interface()
|
mediSync/data/sample/sample_info.txt
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Sample X-ray Images
|
2 |
+
|
3 |
+
## normal_chest_xray.jpg
|
4 |
+
Description: Normal chest X-ray
|
5 |
+
Source: https://prod-images-static.radiopaedia.org/images/53448173/322830a37f0fa0852773ca2db3e8d8_big_gallery.jpeg
|
6 |
+
|
7 |
+
## pneumonia_xray.jpg
|
8 |
+
Description: X-ray with pneumonia
|
9 |
+
Source: https://prod-images-static.radiopaedia.org/images/52465460/e4d8791bd7502ab72af8d9e5c322db_big_gallery.jpg
|
10 |
+
|
11 |
+
## cardiomegaly_xray.jpg
|
12 |
+
Description: X-ray with cardiomegaly
|
13 |
+
Source: https://prod-images-static.radiopaedia.org/images/556520/cf17c05750adb04b2a6e23afb47c7d_big_gallery.jpg
|
14 |
+
|
15 |
+
## nodule_xray.jpg
|
16 |
+
Description: X-ray with lung nodule
|
17 |
+
Source: https://prod-images-static.radiopaedia.org/images/19972291/41eed1a2cdad06d26c3f415a6ed65a_big_gallery.jpeg
|
18 |
+
|
19 |
+
|
20 |
+
These images are used for testing and demonstration purposes only.
|
21 |
+
Please note that these images are from public medical education sources.
|
22 |
+
Do not use for clinical decision making.
|
mediSync/models/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MediSync: Models Module
|
3 |
+
=======================
|
4 |
+
|
5 |
+
This module contains the core machine learning models for the MediSync system:
|
6 |
+
|
7 |
+
1. XRayImageAnalyzer: Analyzes X-ray images using pre-trained vision models
|
8 |
+
2. MedicalReportAnalyzer: Extracts information from medical reports using NLP models
|
9 |
+
3. MultimodalFusion: Combines insights from both image and text analysis
|
10 |
+
"""
|
11 |
+
|
12 |
+
from .image_analyzer import XRayImageAnalyzer
|
13 |
+
from .multimodal_fusion import MultimodalFusion
|
14 |
+
from .text_analyzer import MedicalReportAnalyzer
|
15 |
+
|
16 |
+
__all__ = ["XRayImageAnalyzer", "MedicalReportAnalyzer", "MultimodalFusion"]
|
mediSync/models/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (826 Bytes). View file
|
|
mediSync/models/__pycache__/image_analyzer.cpython-311.pyc
ADDED
Binary file (9.32 kB). View file
|
|
mediSync/models/__pycache__/multimodal_fusion.cpython-311.pyc
ADDED
Binary file (24.9 kB). View file
|
|
mediSync/models/__pycache__/text_analyzer.cpython-311.pyc
ADDED
Binary file (19 kB). View file
|
|
mediSync/models/image_analyzer.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
7 |
+
|
8 |
+
|
9 |
+
class XRayImageAnalyzer:
|
10 |
+
"""
|
11 |
+
A class for analyzing medical X-ray images using pre-trained models from Hugging Face.
|
12 |
+
|
13 |
+
This analyzer uses the DeiT (Data-efficient image Transformers) model fine-tuned
|
14 |
+
on chest X-ray images to detect abnormalities.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self, model_name="facebook/deit-base-patch16-224-medical-cxr", device=None
|
19 |
+
):
|
20 |
+
"""
|
21 |
+
Initialize the X-ray image analyzer with a specific pre-trained model.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_name (str): The Hugging Face model name to use
|
25 |
+
device (str, optional): Device to run the model on ('cuda' or 'cpu')
|
26 |
+
"""
|
27 |
+
self.logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
# Determine device (CPU or GPU)
|
30 |
+
if device is None:
|
31 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
else:
|
33 |
+
self.device = device
|
34 |
+
|
35 |
+
self.logger.info(f"Using device: {self.device}")
|
36 |
+
|
37 |
+
# Load model and feature extractor
|
38 |
+
try:
|
39 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
40 |
+
self.model = AutoModelForImageClassification.from_pretrained(model_name)
|
41 |
+
self.model.to(self.device)
|
42 |
+
self.model.eval() # Set to evaluation mode
|
43 |
+
self.logger.info(f"Successfully loaded model: {model_name}")
|
44 |
+
|
45 |
+
# Map labels to more informative descriptions
|
46 |
+
self.labels = self.model.config.id2label
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
self.logger.error(f"Failed to load model: {e}")
|
50 |
+
raise
|
51 |
+
|
52 |
+
def preprocess_image(self, image_path):
|
53 |
+
"""
|
54 |
+
Preprocess an X-ray image for model input.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
image_path (str or PIL.Image): Path to image or PIL Image object
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
dict: Processed inputs ready for the model
|
61 |
+
"""
|
62 |
+
try:
|
63 |
+
# Load image if path is provided
|
64 |
+
if isinstance(image_path, str):
|
65 |
+
if not os.path.exists(image_path):
|
66 |
+
raise FileNotFoundError(f"Image file not found: {image_path}")
|
67 |
+
image = Image.open(image_path).convert("RGB")
|
68 |
+
else:
|
69 |
+
# Assume it's already a PIL Image
|
70 |
+
image = image_path.convert("RGB")
|
71 |
+
|
72 |
+
# Apply feature extraction
|
73 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
74 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
75 |
+
|
76 |
+
return inputs, image
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
self.logger.error(f"Error in preprocessing image: {e}")
|
80 |
+
raise
|
81 |
+
|
82 |
+
def analyze(self, image_path, threshold=0.5):
|
83 |
+
"""
|
84 |
+
Analyze an X-ray image and detect abnormalities.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
image_path (str or PIL.Image): Path to the X-ray image or PIL Image object
|
88 |
+
threshold (float): Classification threshold for positive findings
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
dict: Analysis results including:
|
92 |
+
- predictions: List of (label, probability) tuples
|
93 |
+
- primary_finding: The most likely abnormality
|
94 |
+
- has_abnormality: Boolean indicating if abnormalities were detected
|
95 |
+
- confidence: Confidence score for the primary finding
|
96 |
+
"""
|
97 |
+
try:
|
98 |
+
# Preprocess the image
|
99 |
+
inputs, original_image = self.preprocess_image(image_path)
|
100 |
+
|
101 |
+
# Run inference
|
102 |
+
with torch.no_grad():
|
103 |
+
outputs = self.model(**inputs)
|
104 |
+
|
105 |
+
# Process predictions
|
106 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
|
107 |
+
probabilities = probabilities.cpu().numpy()
|
108 |
+
|
109 |
+
# Get predictions sorted by probability
|
110 |
+
predictions = []
|
111 |
+
for i, p in enumerate(probabilities):
|
112 |
+
label = self.labels[i]
|
113 |
+
predictions.append((label, float(p)))
|
114 |
+
|
115 |
+
# Sort by probability (descending)
|
116 |
+
predictions.sort(key=lambda x: x[1], reverse=True)
|
117 |
+
|
118 |
+
# Determine if there's an abnormality and the primary finding
|
119 |
+
normal_idx = [
|
120 |
+
i
|
121 |
+
for i, (label, _) in enumerate(predictions)
|
122 |
+
if label.lower() == "normal" or label.lower() == "no finding"
|
123 |
+
]
|
124 |
+
|
125 |
+
if normal_idx and predictions[normal_idx[0]][1] > threshold:
|
126 |
+
has_abnormality = False
|
127 |
+
primary_finding = "No abnormalities detected"
|
128 |
+
confidence = predictions[normal_idx[0]][1]
|
129 |
+
else:
|
130 |
+
has_abnormality = True
|
131 |
+
primary_finding = predictions[0][0]
|
132 |
+
confidence = predictions[0][1]
|
133 |
+
|
134 |
+
return {
|
135 |
+
"predictions": predictions,
|
136 |
+
"primary_finding": primary_finding,
|
137 |
+
"has_abnormality": has_abnormality,
|
138 |
+
"confidence": confidence,
|
139 |
+
}
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
self.logger.error(f"Error analyzing image: {e}")
|
143 |
+
raise
|
144 |
+
|
145 |
+
def get_explanation(self, results):
|
146 |
+
"""
|
147 |
+
Generate a human-readable explanation of the analysis results.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
results (dict): The results returned by the analyze method
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
str: A text explanation of the findings
|
154 |
+
"""
|
155 |
+
if not results["has_abnormality"]:
|
156 |
+
explanation = (
|
157 |
+
f"The X-ray appears normal with {results['confidence']:.1%} confidence."
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
explanation = (
|
161 |
+
f"The primary finding is {results['primary_finding']} "
|
162 |
+
f"with {results['confidence']:.1%} confidence.\n\n"
|
163 |
+
f"Other potential findings include:\n"
|
164 |
+
)
|
165 |
+
|
166 |
+
# Add top 3 other findings (skipping the first one which is primary)
|
167 |
+
for label, prob in results["predictions"][1:4]:
|
168 |
+
if prob > 0.05: # Only include if probability > 5%
|
169 |
+
explanation += f"- {label}: {prob:.1%}\n"
|
170 |
+
|
171 |
+
return explanation
|
172 |
+
|
173 |
+
|
174 |
+
# Example usage
|
175 |
+
if __name__ == "__main__":
|
176 |
+
# Set up logging
|
177 |
+
logging.basicConfig(level=logging.INFO)
|
178 |
+
|
179 |
+
# Test on a sample image if available
|
180 |
+
analyzer = XRayImageAnalyzer()
|
181 |
+
|
182 |
+
# Check if sample data directory exists
|
183 |
+
sample_dir = "../data/sample"
|
184 |
+
if os.path.exists(sample_dir) and os.listdir(sample_dir):
|
185 |
+
sample_image = os.path.join(sample_dir, os.listdir(sample_dir)[0])
|
186 |
+
print(f"Analyzing sample image: {sample_image}")
|
187 |
+
|
188 |
+
results = analyzer.analyze(sample_image)
|
189 |
+
explanation = analyzer.get_explanation(results)
|
190 |
+
|
191 |
+
print("\nAnalysis Results:")
|
192 |
+
print(explanation)
|
193 |
+
else:
|
194 |
+
print("No sample images found in ../data/sample directory")
|
mediSync/models/multimodal_fusion.py
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from .image_analyzer import XRayImageAnalyzer
|
4 |
+
from .text_analyzer import MedicalReportAnalyzer
|
5 |
+
|
6 |
+
|
7 |
+
class MultimodalFusion:
|
8 |
+
"""
|
9 |
+
A class for fusing insights from image analysis and text analysis of medical data.
|
10 |
+
|
11 |
+
This fusion approach combines the strengths of both modalities:
|
12 |
+
- Images provide visual evidence of abnormalities
|
13 |
+
- Text reports provide context, history and radiologist interpretations
|
14 |
+
|
15 |
+
The combined analysis provides a more comprehensive understanding than either modality alone.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, image_model=None, text_model=None, device=None):
|
19 |
+
"""
|
20 |
+
Initialize the multimodal fusion module with image and text analyzers.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
image_model (str, optional): Model to use for image analysis
|
24 |
+
text_model (str, optional): Model to use for text analysis
|
25 |
+
device (str, optional): Device to run models on ('cuda' or 'cpu')
|
26 |
+
"""
|
27 |
+
self.logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
# Determine device
|
30 |
+
if device is None:
|
31 |
+
import torch
|
32 |
+
|
33 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
else:
|
35 |
+
self.device = device
|
36 |
+
|
37 |
+
self.logger.info(f"Using device: {self.device}")
|
38 |
+
|
39 |
+
# Initialize image analyzer
|
40 |
+
try:
|
41 |
+
self.image_analyzer = XRayImageAnalyzer(
|
42 |
+
model_name=image_model
|
43 |
+
if image_model
|
44 |
+
else "facebook/deit-base-patch16-224-medical-cxr",
|
45 |
+
device=self.device,
|
46 |
+
)
|
47 |
+
self.logger.info("Successfully initialized image analyzer")
|
48 |
+
except Exception as e:
|
49 |
+
self.logger.error(f"Failed to initialize image analyzer: {e}")
|
50 |
+
self.image_analyzer = None
|
51 |
+
|
52 |
+
# Initialize text analyzer
|
53 |
+
try:
|
54 |
+
self.text_analyzer = MedicalReportAnalyzer(
|
55 |
+
classifier_model=text_model if text_model else "medicalai/ClinicalBERT",
|
56 |
+
device=self.device,
|
57 |
+
)
|
58 |
+
self.logger.info("Successfully initialized text analyzer")
|
59 |
+
except Exception as e:
|
60 |
+
self.logger.error(f"Failed to initialize text analyzer: {e}")
|
61 |
+
self.text_analyzer = None
|
62 |
+
|
63 |
+
def analyze_image(self, image_path):
|
64 |
+
"""
|
65 |
+
Analyze a medical image.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
image_path (str): Path to the medical image
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
dict: Image analysis results
|
72 |
+
"""
|
73 |
+
if not self.image_analyzer:
|
74 |
+
self.logger.warning("Image analyzer not available")
|
75 |
+
return {"error": "Image analyzer not available"}
|
76 |
+
|
77 |
+
try:
|
78 |
+
return self.image_analyzer.analyze(image_path)
|
79 |
+
except Exception as e:
|
80 |
+
self.logger.error(f"Error analyzing image: {e}")
|
81 |
+
return {"error": str(e)}
|
82 |
+
|
83 |
+
def analyze_text(self, text):
|
84 |
+
"""
|
85 |
+
Analyze medical report text.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
text (str): Medical report text
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
dict: Text analysis results
|
92 |
+
"""
|
93 |
+
if not self.text_analyzer:
|
94 |
+
self.logger.warning("Text analyzer not available")
|
95 |
+
return {"error": "Text analyzer not available"}
|
96 |
+
|
97 |
+
try:
|
98 |
+
return self.text_analyzer.analyze(text)
|
99 |
+
except Exception as e:
|
100 |
+
self.logger.error(f"Error analyzing text: {e}")
|
101 |
+
return {"error": str(e)}
|
102 |
+
|
103 |
+
def _calculate_agreement_score(self, image_results, text_results):
|
104 |
+
"""
|
105 |
+
Calculate agreement score between image and text analyses.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
image_results (dict): Results from image analysis
|
109 |
+
text_results (dict): Results from text analysis
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
float: Agreement score (0-1, where 1 is perfect agreement)
|
113 |
+
"""
|
114 |
+
try:
|
115 |
+
# Default to neutral agreement
|
116 |
+
agreement = 0.5
|
117 |
+
|
118 |
+
# Check if image detected abnormality
|
119 |
+
image_abnormal = image_results.get("has_abnormality", False)
|
120 |
+
|
121 |
+
# Check text severity
|
122 |
+
text_severity = text_results.get("severity", {}).get("level", "Unknown")
|
123 |
+
text_abnormal = text_severity not in ["Normal", "Unknown"]
|
124 |
+
|
125 |
+
# Basic agreement check
|
126 |
+
if image_abnormal == text_abnormal:
|
127 |
+
agreement += 0.25
|
128 |
+
else:
|
129 |
+
agreement -= 0.25
|
130 |
+
|
131 |
+
# Check if specific findings match
|
132 |
+
image_finding = image_results.get("primary_finding", "").lower()
|
133 |
+
|
134 |
+
# Extract problem entities from text
|
135 |
+
problems = text_results.get("entities", {}).get("problem", [])
|
136 |
+
problem_text = " ".join(problems).lower()
|
137 |
+
|
138 |
+
# Check for common keywords in both
|
139 |
+
common_conditions = [
|
140 |
+
"pneumonia",
|
141 |
+
"effusion",
|
142 |
+
"nodule",
|
143 |
+
"mass",
|
144 |
+
"cardiomegaly",
|
145 |
+
"opacity",
|
146 |
+
"fracture",
|
147 |
+
"tumor",
|
148 |
+
"edema",
|
149 |
+
]
|
150 |
+
|
151 |
+
matching_conditions = 0
|
152 |
+
total_mentioned = 0
|
153 |
+
|
154 |
+
for condition in common_conditions:
|
155 |
+
in_image = condition in image_finding
|
156 |
+
in_text = condition in problem_text
|
157 |
+
|
158 |
+
if in_image or in_text:
|
159 |
+
total_mentioned += 1
|
160 |
+
|
161 |
+
if in_image and in_text:
|
162 |
+
matching_conditions += 1
|
163 |
+
agreement += 0.05 # Boost agreement for each matching condition
|
164 |
+
|
165 |
+
# Calculate condition match ratio if any conditions were mentioned
|
166 |
+
if total_mentioned > 0:
|
167 |
+
match_ratio = matching_conditions / total_mentioned
|
168 |
+
agreement += match_ratio * 0.2
|
169 |
+
|
170 |
+
# Normalize agreement to 0-1 range
|
171 |
+
agreement = max(0, min(1, agreement))
|
172 |
+
|
173 |
+
return agreement
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
self.logger.error(f"Error calculating agreement score: {e}")
|
177 |
+
return 0.5 # Return neutral agreement on error
|
178 |
+
|
179 |
+
def _get_confidence_weighted_finding(self, image_results, text_results, agreement):
|
180 |
+
"""
|
181 |
+
Get the most confident finding weighted by modality confidence.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
image_results (dict): Results from image analysis
|
185 |
+
text_results (dict): Results from text analysis
|
186 |
+
agreement (float): Agreement score between modalities
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
str: Most confident finding
|
190 |
+
"""
|
191 |
+
try:
|
192 |
+
image_finding = image_results.get("primary_finding", "")
|
193 |
+
image_confidence = image_results.get("confidence", 0.5)
|
194 |
+
|
195 |
+
# For text, use the most severe problem as primary finding
|
196 |
+
problems = text_results.get("entities", {}).get("problem", [])
|
197 |
+
|
198 |
+
text_confidence = text_results.get("severity", {}).get("confidence", 0.5)
|
199 |
+
|
200 |
+
if not problems:
|
201 |
+
# No problems identified in text
|
202 |
+
if image_confidence > 0.7:
|
203 |
+
return image_finding
|
204 |
+
else:
|
205 |
+
return "No significant findings"
|
206 |
+
|
207 |
+
# Simple confidence-weighted selection
|
208 |
+
if image_confidence > text_confidence + 0.2:
|
209 |
+
return image_finding
|
210 |
+
elif problems and text_confidence > image_confidence + 0.2:
|
211 |
+
return (
|
212 |
+
problems[0]
|
213 |
+
if isinstance(problems, list) and problems
|
214 |
+
else "Unknown finding"
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
# Similar confidence, check agreement
|
218 |
+
if agreement > 0.7:
|
219 |
+
# High agreement, try to find the specific condition mentioned in both
|
220 |
+
for problem in problems:
|
221 |
+
if problem.lower() in image_finding.lower():
|
222 |
+
return problem
|
223 |
+
|
224 |
+
# Default to image finding if high confidence
|
225 |
+
if image_confidence > 0.6:
|
226 |
+
return image_finding
|
227 |
+
elif problems:
|
228 |
+
return problems[0]
|
229 |
+
else:
|
230 |
+
return image_finding
|
231 |
+
else:
|
232 |
+
# Low agreement, include both perspectives
|
233 |
+
if image_finding and problems:
|
234 |
+
return f"{image_finding} (image) / {problems[0]} (report)"
|
235 |
+
elif image_finding:
|
236 |
+
return image_finding
|
237 |
+
elif problems:
|
238 |
+
return problems[0]
|
239 |
+
else:
|
240 |
+
return "Findings unclear - review recommended"
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
self.logger.error(f"Error getting weighted finding: {e}")
|
244 |
+
return "Unable to determine primary finding"
|
245 |
+
|
246 |
+
def _merge_followup_recommendations(self, image_results, text_results):
|
247 |
+
"""
|
248 |
+
Merge follow-up recommendations from both modalities.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
image_results (dict): Results from image analysis
|
252 |
+
text_results (dict): Results from text analysis
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
list: Combined follow-up recommendations
|
256 |
+
"""
|
257 |
+
try:
|
258 |
+
# Get text-based recommendations
|
259 |
+
text_recommendations = text_results.get("followup_recommendations", [])
|
260 |
+
|
261 |
+
# Create image-based recommendations based on findings
|
262 |
+
image_recommendations = []
|
263 |
+
|
264 |
+
if image_results.get("has_abnormality", False):
|
265 |
+
primary = image_results.get("primary_finding", "")
|
266 |
+
confidence = image_results.get("confidence", 0)
|
267 |
+
|
268 |
+
if (
|
269 |
+
"nodule" in primary.lower()
|
270 |
+
or "mass" in primary.lower()
|
271 |
+
or "tumor" in primary.lower()
|
272 |
+
):
|
273 |
+
image_recommendations.append(
|
274 |
+
f"Follow-up imaging recommended to further evaluate {primary}."
|
275 |
+
)
|
276 |
+
elif "pneumonia" in primary.lower():
|
277 |
+
image_recommendations.append(
|
278 |
+
"Clinical correlation and follow-up imaging recommended."
|
279 |
+
)
|
280 |
+
elif confidence > 0.8:
|
281 |
+
image_recommendations.append(
|
282 |
+
f"Consider follow-up imaging to monitor {primary}."
|
283 |
+
)
|
284 |
+
elif confidence > 0.5:
|
285 |
+
image_recommendations.append(
|
286 |
+
"Consider clinical correlation and potential follow-up."
|
287 |
+
)
|
288 |
+
|
289 |
+
# Combine recommendations, removing duplicates
|
290 |
+
all_recommendations = text_recommendations + image_recommendations
|
291 |
+
|
292 |
+
# Remove near-duplicates (similar recommendations)
|
293 |
+
unique_recommendations = []
|
294 |
+
for rec in all_recommendations:
|
295 |
+
if not any(
|
296 |
+
self._is_similar_recommendation(rec, existing)
|
297 |
+
for existing in unique_recommendations
|
298 |
+
):
|
299 |
+
unique_recommendations.append(rec)
|
300 |
+
|
301 |
+
return unique_recommendations
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
self.logger.error(f"Error merging follow-up recommendations: {e}")
|
305 |
+
return ["Follow-up recommended based on findings."]
|
306 |
+
|
307 |
+
def _is_similar_recommendation(self, rec1, rec2):
|
308 |
+
"""Check if two recommendations are semantically similar."""
|
309 |
+
# Convert to lowercase for comparison
|
310 |
+
rec1_lower = rec1.lower()
|
311 |
+
rec2_lower = rec2.lower()
|
312 |
+
|
313 |
+
# Check for significant overlap
|
314 |
+
words1 = set(rec1_lower.split())
|
315 |
+
words2 = set(rec2_lower.split())
|
316 |
+
|
317 |
+
# Calculate Jaccard similarity
|
318 |
+
intersection = words1.intersection(words2)
|
319 |
+
union = words1.union(words2)
|
320 |
+
|
321 |
+
similarity = len(intersection) / len(union) if union else 0
|
322 |
+
|
323 |
+
# Consider similar if more than 60% overlap
|
324 |
+
return similarity > 0.6
|
325 |
+
|
326 |
+
def _get_final_severity(self, image_results, text_results, agreement):
|
327 |
+
"""
|
328 |
+
Determine final severity based on both modalities.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
image_results (dict): Results from image analysis
|
332 |
+
text_results (dict): Results from text analysis
|
333 |
+
agreement (float): Agreement score between modalities
|
334 |
+
|
335 |
+
Returns:
|
336 |
+
dict: Final severity assessment
|
337 |
+
"""
|
338 |
+
try:
|
339 |
+
# Get text-based severity
|
340 |
+
text_severity = text_results.get("severity", {})
|
341 |
+
text_level = text_severity.get("level", "Unknown")
|
342 |
+
text_score = text_severity.get("score", 0)
|
343 |
+
text_confidence = text_severity.get("confidence", 0.5)
|
344 |
+
|
345 |
+
# Convert image findings to severity
|
346 |
+
image_abnormal = image_results.get("has_abnormality", False)
|
347 |
+
image_confidence = image_results.get("confidence", 0.5)
|
348 |
+
|
349 |
+
# Default severity mapping from image
|
350 |
+
image_severity = "Normal" if not image_abnormal else "Moderate"
|
351 |
+
image_score = 0 if not image_abnormal else 2.0
|
352 |
+
|
353 |
+
# Adjust image severity based on specific findings
|
354 |
+
primary_finding = image_results.get("primary_finding", "").lower()
|
355 |
+
|
356 |
+
# Map certain conditions to severity levels
|
357 |
+
severity_mapping = {
|
358 |
+
"pneumonia": ("Moderate", 2.5),
|
359 |
+
"pneumothorax": ("Severe", 3.0),
|
360 |
+
"effusion": ("Moderate", 2.0),
|
361 |
+
"pulmonary edema": ("Moderate", 2.5),
|
362 |
+
"nodule": ("Mild", 1.5),
|
363 |
+
"mass": ("Moderate", 2.5),
|
364 |
+
"tumor": ("Severe", 3.0),
|
365 |
+
"cardiomegaly": ("Mild", 1.5),
|
366 |
+
"fracture": ("Moderate", 2.0),
|
367 |
+
"consolidation": ("Moderate", 2.0),
|
368 |
+
}
|
369 |
+
|
370 |
+
# Check if any key terms are in the primary finding
|
371 |
+
for key, (severity, score) in severity_mapping.items():
|
372 |
+
if key in primary_finding:
|
373 |
+
image_severity = severity
|
374 |
+
image_score = score
|
375 |
+
break
|
376 |
+
|
377 |
+
# Weight based on confidence and agreement
|
378 |
+
if agreement > 0.7:
|
379 |
+
# High agreement - weight equally
|
380 |
+
final_score = (image_score + text_score) / 2
|
381 |
+
else:
|
382 |
+
# Lower agreement - weight by confidence
|
383 |
+
total_confidence = image_confidence + text_confidence
|
384 |
+
if total_confidence > 0:
|
385 |
+
image_weight = image_confidence / total_confidence
|
386 |
+
text_weight = text_confidence / total_confidence
|
387 |
+
final_score = (image_score * image_weight) + (
|
388 |
+
text_score * text_weight
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
final_score = (image_score + text_score) / 2
|
392 |
+
|
393 |
+
# Map score to severity level
|
394 |
+
severity_levels = {
|
395 |
+
0: "Normal",
|
396 |
+
1: "Mild",
|
397 |
+
2: "Moderate",
|
398 |
+
3: "Severe",
|
399 |
+
4: "Critical",
|
400 |
+
}
|
401 |
+
|
402 |
+
# Round to nearest level
|
403 |
+
level_index = round(min(4, max(0, final_score)))
|
404 |
+
final_level = severity_levels[level_index]
|
405 |
+
|
406 |
+
return {
|
407 |
+
"level": final_level,
|
408 |
+
"score": round(final_score, 1),
|
409 |
+
"confidence": round((image_confidence + text_confidence) / 2, 2),
|
410 |
+
}
|
411 |
+
|
412 |
+
except Exception as e:
|
413 |
+
self.logger.error(f"Error determining final severity: {e}")
|
414 |
+
return {"level": "Unknown", "score": 0, "confidence": 0}
|
415 |
+
|
416 |
+
def fuse_analyses(self, image_results, text_results):
|
417 |
+
"""
|
418 |
+
Fuse the results from image and text analyses.
|
419 |
+
|
420 |
+
Args:
|
421 |
+
image_results (dict): Results from image analysis
|
422 |
+
text_results (dict): Results from text analysis
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
dict: Fused analysis results
|
426 |
+
"""
|
427 |
+
try:
|
428 |
+
# Calculate agreement between modalities
|
429 |
+
agreement = self._calculate_agreement_score(image_results, text_results)
|
430 |
+
self.logger.info(f"Agreement score between modalities: {agreement:.2f}")
|
431 |
+
|
432 |
+
# Get confidence-weighted primary finding
|
433 |
+
primary_finding = self._get_confidence_weighted_finding(
|
434 |
+
image_results, text_results, agreement
|
435 |
+
)
|
436 |
+
|
437 |
+
# Merge follow-up recommendations
|
438 |
+
followup = self._merge_followup_recommendations(image_results, text_results)
|
439 |
+
|
440 |
+
# Get final severity assessment
|
441 |
+
severity = self._get_final_severity(image_results, text_results, agreement)
|
442 |
+
|
443 |
+
# Create comprehensive findings list
|
444 |
+
findings = []
|
445 |
+
|
446 |
+
# Add text-extracted findings
|
447 |
+
text_findings = text_results.get("findings", [])
|
448 |
+
if text_findings:
|
449 |
+
findings.extend(text_findings)
|
450 |
+
|
451 |
+
# Add primary image finding if not already included
|
452 |
+
image_finding = image_results.get("primary_finding", "")
|
453 |
+
if image_finding and not any(
|
454 |
+
image_finding.lower() in f.lower() for f in findings
|
455 |
+
):
|
456 |
+
findings.append(f"Image finding: {image_finding}")
|
457 |
+
|
458 |
+
# Create fused result
|
459 |
+
fused_result = {
|
460 |
+
"agreement_score": round(agreement, 2),
|
461 |
+
"primary_finding": primary_finding,
|
462 |
+
"severity": severity,
|
463 |
+
"findings": findings,
|
464 |
+
"followup_recommendations": followup,
|
465 |
+
"modality_results": {"image": image_results, "text": text_results},
|
466 |
+
}
|
467 |
+
|
468 |
+
return fused_result
|
469 |
+
|
470 |
+
except Exception as e:
|
471 |
+
self.logger.error(f"Error fusing analyses: {e}")
|
472 |
+
return {
|
473 |
+
"error": str(e),
|
474 |
+
"modality_results": {"image": image_results, "text": text_results},
|
475 |
+
}
|
476 |
+
|
477 |
+
def analyze(self, image_path, report_text):
|
478 |
+
"""
|
479 |
+
Perform multimodal analysis of medical image and report.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
image_path (str): Path to the medical image
|
483 |
+
report_text (str): Medical report text
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
dict: Fused analysis results
|
487 |
+
"""
|
488 |
+
try:
|
489 |
+
# Analyze image
|
490 |
+
image_results = self.analyze_image(image_path)
|
491 |
+
|
492 |
+
# Analyze text
|
493 |
+
text_results = self.analyze_text(report_text)
|
494 |
+
|
495 |
+
# Fuse the analyses
|
496 |
+
return self.fuse_analyses(image_results, text_results)
|
497 |
+
|
498 |
+
except Exception as e:
|
499 |
+
self.logger.error(f"Error in multimodal analysis: {e}")
|
500 |
+
return {"error": str(e)}
|
501 |
+
|
502 |
+
def get_explanation(self, fused_results):
|
503 |
+
"""
|
504 |
+
Generate a human-readable explanation of the fused analysis.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
fused_results (dict): Results from the fused analysis
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
str: A text explanation of the fused analysis
|
511 |
+
"""
|
512 |
+
try:
|
513 |
+
explanation = []
|
514 |
+
|
515 |
+
# Add overview section
|
516 |
+
primary_finding = fused_results.get("primary_finding", "Unknown")
|
517 |
+
severity = fused_results.get("severity", {}).get("level", "Unknown")
|
518 |
+
|
519 |
+
explanation.append("# Medical Analysis Summary\n")
|
520 |
+
explanation.append("## Overview\n")
|
521 |
+
explanation.append(f"Primary finding: **{primary_finding}**\n")
|
522 |
+
explanation.append(f"Severity level: **{severity}**\n")
|
523 |
+
|
524 |
+
# Add agreement information
|
525 |
+
agreement = fused_results.get("agreement_score", 0)
|
526 |
+
agreement_text = (
|
527 |
+
"High" if agreement > 0.7 else "Moderate" if agreement > 0.4 else "Low"
|
528 |
+
)
|
529 |
+
|
530 |
+
explanation.append(
|
531 |
+
f"Image and text analysis agreement: **{agreement_text}** ({agreement:.0%})\n"
|
532 |
+
)
|
533 |
+
|
534 |
+
# Add findings section
|
535 |
+
explanation.append("\n## Detailed Findings\n")
|
536 |
+
findings = fused_results.get("findings", [])
|
537 |
+
|
538 |
+
if findings:
|
539 |
+
for finding in findings:
|
540 |
+
explanation.append(f"- {finding}\n")
|
541 |
+
else:
|
542 |
+
explanation.append("No specific findings detailed.\n")
|
543 |
+
|
544 |
+
# Add follow-up section
|
545 |
+
explanation.append("\n## Recommended Follow-up\n")
|
546 |
+
followups = fused_results.get("followup_recommendations", [])
|
547 |
+
|
548 |
+
if followups:
|
549 |
+
for followup in followups:
|
550 |
+
explanation.append(f"- {followup}\n")
|
551 |
+
else:
|
552 |
+
explanation.append("No specific follow-up recommendations provided.\n")
|
553 |
+
|
554 |
+
# Add confidence note
|
555 |
+
confidence = fused_results.get("severity", {}).get("confidence", 0)
|
556 |
+
explanation.append(
|
557 |
+
f"\n*Note: This analysis has a confidence level of {confidence:.0%}. "
|
558 |
+
f"Please consult with healthcare professionals for official diagnosis.*"
|
559 |
+
)
|
560 |
+
|
561 |
+
return "\n".join(explanation)
|
562 |
+
|
563 |
+
except Exception as e:
|
564 |
+
self.logger.error(f"Error generating explanation: {e}")
|
565 |
+
return "Error generating analysis explanation."
|
566 |
+
|
567 |
+
|
568 |
+
# Example usage
|
569 |
+
if __name__ == "__main__":
|
570 |
+
# Set up logging
|
571 |
+
logging.basicConfig(level=logging.INFO)
|
572 |
+
|
573 |
+
# Test on sample data if available
|
574 |
+
import os
|
575 |
+
|
576 |
+
fusion = MultimodalFusion()
|
577 |
+
|
578 |
+
# Sample text report
|
579 |
+
sample_report = """
|
580 |
+
CHEST X-RAY EXAMINATION
|
581 |
+
|
582 |
+
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
583 |
+
|
584 |
+
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
585 |
+
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
586 |
+
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
587 |
+
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
588 |
+
|
589 |
+
IMPRESSION:
|
590 |
+
1. Mild cardiomegaly.
|
591 |
+
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
592 |
+
3. No acute pulmonary parenchymal abnormality.
|
593 |
+
|
594 |
+
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
595 |
+
"""
|
596 |
+
|
597 |
+
# Check if sample data directory exists and contains images
|
598 |
+
sample_dir = "../data/sample"
|
599 |
+
if os.path.exists(sample_dir) and os.listdir(sample_dir):
|
600 |
+
sample_image = os.path.join(sample_dir, os.listdir(sample_dir)[0])
|
601 |
+
print(f"Analyzing sample image: {sample_image}")
|
602 |
+
|
603 |
+
# Perform multimodal analysis
|
604 |
+
fused_results = fusion.analyze(sample_image, sample_report)
|
605 |
+
explanation = fusion.get_explanation(fused_results)
|
606 |
+
|
607 |
+
print("\nFused Analysis Results:")
|
608 |
+
print(explanation)
|
609 |
+
else:
|
610 |
+
print("No sample images found. Only analyzing text report.")
|
611 |
+
|
612 |
+
# Analyze just the text
|
613 |
+
text_results = fusion.analyze_text(sample_report)
|
614 |
+
|
615 |
+
print("\nText Analysis Results:")
|
616 |
+
print(
|
617 |
+
f"Severity: {text_results['severity']['level']} (Score: {text_results['severity']['score']})"
|
618 |
+
)
|
619 |
+
|
620 |
+
print("\nKey Findings:")
|
621 |
+
for finding in text_results["findings"]:
|
622 |
+
print(f"- {finding}")
|
623 |
+
|
624 |
+
print("\nEntities:")
|
625 |
+
for category, items in text_results["entities"].items():
|
626 |
+
if items:
|
627 |
+
print(f"- {category.capitalize()}: {', '.join(items)}")
|
628 |
+
|
629 |
+
print("\nFollow-up Recommendations:")
|
630 |
+
for rec in text_results["followup_recommendations"]:
|
631 |
+
print(f"- {rec}")
|
mediSync/models/text_analyzer.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
6 |
+
|
7 |
+
|
8 |
+
class MedicalReportAnalyzer:
|
9 |
+
"""
|
10 |
+
A class for analyzing medical text reports using pre-trained NLP models from Hugging Face.
|
11 |
+
|
12 |
+
This analyzer can:
|
13 |
+
1. Extract medical entities (conditions, treatments, tests)
|
14 |
+
2. Classify report severity
|
15 |
+
3. Extract key findings
|
16 |
+
4. Identify suggested follow-up actions
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
ner_model="samrawal/bert-base-uncased_medical-ner",
|
22 |
+
classifier_model="medicalai/ClinicalBERT",
|
23 |
+
device=None,
|
24 |
+
):
|
25 |
+
"""
|
26 |
+
Initialize the text analyzer with specific pre-trained models.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
ner_model (str): Model for named entity recognition
|
30 |
+
classifier_model (str): Model for text classification
|
31 |
+
device (str, optional): Device to run models on ('cuda' or 'cpu')
|
32 |
+
"""
|
33 |
+
self.logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
# Determine device
|
36 |
+
if device is None:
|
37 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
else:
|
39 |
+
self.device = device
|
40 |
+
|
41 |
+
self.logger.info(f"Using device: {self.device}")
|
42 |
+
|
43 |
+
# Load NER model for entity extraction
|
44 |
+
try:
|
45 |
+
self.ner_pipeline = pipeline(
|
46 |
+
"token-classification",
|
47 |
+
model=ner_model,
|
48 |
+
aggregation_strategy="simple",
|
49 |
+
device=0 if self.device == "cuda" else -1,
|
50 |
+
)
|
51 |
+
self.logger.info(f"Successfully loaded NER model: {ner_model}")
|
52 |
+
except Exception as e:
|
53 |
+
self.logger.error(f"Failed to load NER model: {e}")
|
54 |
+
self.ner_pipeline = None
|
55 |
+
|
56 |
+
# Load classifier model for severity assessment
|
57 |
+
try:
|
58 |
+
self.tokenizer = AutoTokenizer.from_pretrained(classifier_model)
|
59 |
+
self.classifier = AutoModelForSequenceClassification.from_pretrained(
|
60 |
+
classifier_model
|
61 |
+
)
|
62 |
+
self.classifier.to(self.device)
|
63 |
+
self.classifier.eval()
|
64 |
+
self.logger.info(
|
65 |
+
f"Successfully loaded classifier model: {classifier_model}"
|
66 |
+
)
|
67 |
+
except Exception as e:
|
68 |
+
self.logger.error(f"Failed to load classifier model: {e}")
|
69 |
+
self.classifier = None
|
70 |
+
|
71 |
+
# Severity levels mapping
|
72 |
+
self.severity_levels = {
|
73 |
+
0: "Normal",
|
74 |
+
1: "Mild",
|
75 |
+
2: "Moderate",
|
76 |
+
3: "Severe",
|
77 |
+
4: "Critical",
|
78 |
+
}
|
79 |
+
|
80 |
+
# Common medical findings and their severity levels
|
81 |
+
self.finding_severity = {
|
82 |
+
"pneumonia": 3,
|
83 |
+
"fracture": 3,
|
84 |
+
"tumor": 4,
|
85 |
+
"nodule": 2,
|
86 |
+
"mass": 3,
|
87 |
+
"edema": 2,
|
88 |
+
"effusion": 2,
|
89 |
+
"hemorrhage": 3,
|
90 |
+
"opacity": 1,
|
91 |
+
"atelectasis": 2,
|
92 |
+
"pneumothorax": 3,
|
93 |
+
"consolidation": 2,
|
94 |
+
"cardiomegaly": 2,
|
95 |
+
}
|
96 |
+
|
97 |
+
def extract_entities(self, text):
|
98 |
+
"""
|
99 |
+
Extract medical entities from the report text.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
text (str): Medical report text
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
dict: Dictionary of entity lists by category
|
106 |
+
"""
|
107 |
+
if not self.ner_pipeline:
|
108 |
+
self.logger.warning("NER model not available")
|
109 |
+
return {}
|
110 |
+
|
111 |
+
try:
|
112 |
+
# Run NER
|
113 |
+
entities = self.ner_pipeline(text)
|
114 |
+
|
115 |
+
# Group entities by type
|
116 |
+
grouped_entities = {
|
117 |
+
"problem": [], # Medical conditions
|
118 |
+
"test": [], # Tests/procedures
|
119 |
+
"treatment": [], # Treatments/medications
|
120 |
+
"anatomy": [], # Anatomical locations
|
121 |
+
}
|
122 |
+
|
123 |
+
for entity in entities:
|
124 |
+
entity_type = entity.get("entity_group", "").lower()
|
125 |
+
|
126 |
+
# Map entity types to our categories
|
127 |
+
if entity_type in ["problem", "disease", "condition", "diagnosis"]:
|
128 |
+
category = "problem"
|
129 |
+
elif entity_type in ["test", "procedure", "examination"]:
|
130 |
+
category = "test"
|
131 |
+
elif entity_type in ["treatment", "medication", "drug"]:
|
132 |
+
category = "treatment"
|
133 |
+
elif entity_type in ["body_part", "anatomy", "organ"]:
|
134 |
+
category = "anatomy"
|
135 |
+
else:
|
136 |
+
continue # Skip other entity types
|
137 |
+
|
138 |
+
word = entity.get("word", "")
|
139 |
+
score = entity.get("score", 0)
|
140 |
+
|
141 |
+
# Only include if confidence is reasonable
|
142 |
+
if score > 0.7 and word not in grouped_entities[category]:
|
143 |
+
grouped_entities[category].append(word)
|
144 |
+
|
145 |
+
return grouped_entities
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
self.logger.error(f"Error extracting entities: {e}")
|
149 |
+
return {}
|
150 |
+
|
151 |
+
def assess_severity(self, text):
|
152 |
+
"""
|
153 |
+
Assess the severity level of the medical report.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
text (str): Medical report text
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
dict: Severity assessment including level and confidence
|
160 |
+
"""
|
161 |
+
if not self.classifier:
|
162 |
+
self.logger.warning("Classifier model not available")
|
163 |
+
return {"level": "Unknown", "score": 0.0}
|
164 |
+
|
165 |
+
try:
|
166 |
+
# Use rule-based approach along with model
|
167 |
+
severity_score = 0
|
168 |
+
confidence = 0.5 # Start with neutral confidence
|
169 |
+
|
170 |
+
# Check for severe keywords
|
171 |
+
severe_keywords = [
|
172 |
+
"severe",
|
173 |
+
"critical",
|
174 |
+
"urgent",
|
175 |
+
"emergency",
|
176 |
+
"immediate attention",
|
177 |
+
]
|
178 |
+
moderate_keywords = ["moderate", "concerning", "follow-up", "monitor"]
|
179 |
+
mild_keywords = ["mild", "minimal", "slight", "minor"]
|
180 |
+
normal_keywords = [
|
181 |
+
"normal",
|
182 |
+
"unremarkable",
|
183 |
+
"no abnormalities",
|
184 |
+
"within normal limits",
|
185 |
+
]
|
186 |
+
|
187 |
+
# Count keyword occurrences
|
188 |
+
text_lower = text.lower()
|
189 |
+
severe_count = sum(text_lower.count(word) for word in severe_keywords)
|
190 |
+
moderate_count = sum(text_lower.count(word) for word in moderate_keywords)
|
191 |
+
mild_count = sum(text_lower.count(word) for word in mild_keywords)
|
192 |
+
normal_count = sum(text_lower.count(word) for word in normal_keywords)
|
193 |
+
|
194 |
+
# Adjust severity based on keyword counts
|
195 |
+
if severe_count > 0:
|
196 |
+
severity_score += min(severe_count, 2) * 1.5
|
197 |
+
confidence += 0.1
|
198 |
+
if moderate_count > 0:
|
199 |
+
severity_score += min(moderate_count, 3) * 0.75
|
200 |
+
confidence += 0.05
|
201 |
+
if mild_count > 0:
|
202 |
+
severity_score += min(mild_count, 3) * 0.25
|
203 |
+
confidence += 0.05
|
204 |
+
if normal_count > 0:
|
205 |
+
severity_score -= min(normal_count, 3) * 0.75
|
206 |
+
confidence += 0.1
|
207 |
+
|
208 |
+
# Check for specific medical findings
|
209 |
+
for finding, level in self.finding_severity.items():
|
210 |
+
if finding in text_lower:
|
211 |
+
severity_score += level * 0.5
|
212 |
+
confidence += 0.05
|
213 |
+
|
214 |
+
# Normalize severity score to 0-4 range
|
215 |
+
severity_score = max(0, min(4, severity_score))
|
216 |
+
severity_level = int(round(severity_score))
|
217 |
+
|
218 |
+
# Map to severity level
|
219 |
+
severity = self.severity_levels.get(severity_level, "Moderate")
|
220 |
+
|
221 |
+
# Cap confidence at 0.95
|
222 |
+
confidence = min(0.95, confidence)
|
223 |
+
|
224 |
+
return {
|
225 |
+
"level": severity,
|
226 |
+
"score": round(severity_score, 1),
|
227 |
+
"confidence": round(confidence, 2),
|
228 |
+
}
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
self.logger.error(f"Error assessing severity: {e}")
|
232 |
+
return {"level": "Unknown", "score": 0.0, "confidence": 0.0}
|
233 |
+
|
234 |
+
def extract_findings(self, text):
|
235 |
+
"""
|
236 |
+
Extract key clinical findings from the report.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
text (str): Medical report text
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
list: List of key findings
|
243 |
+
"""
|
244 |
+
try:
|
245 |
+
# Split text into sentences
|
246 |
+
sentences = re.split(r"[.!?]\s+", text)
|
247 |
+
findings = []
|
248 |
+
|
249 |
+
# Key phrases that often introduce findings
|
250 |
+
finding_markers = [
|
251 |
+
"finding",
|
252 |
+
"observed",
|
253 |
+
"noted",
|
254 |
+
"shows",
|
255 |
+
"reveals",
|
256 |
+
"demonstrates",
|
257 |
+
"indicates",
|
258 |
+
"evident",
|
259 |
+
"apparent",
|
260 |
+
"consistent with",
|
261 |
+
"suggestive of",
|
262 |
+
]
|
263 |
+
|
264 |
+
# Negative markers
|
265 |
+
negation_markers = ["no", "not", "none", "negative", "without", "denies"]
|
266 |
+
|
267 |
+
for sentence in sentences:
|
268 |
+
# Skip very short sentences
|
269 |
+
if len(sentence.split()) < 3:
|
270 |
+
continue
|
271 |
+
|
272 |
+
sentence = sentence.strip()
|
273 |
+
|
274 |
+
# Check if this sentence likely contains a finding
|
275 |
+
contains_finding_marker = any(
|
276 |
+
marker in sentence.lower() for marker in finding_markers
|
277 |
+
)
|
278 |
+
|
279 |
+
# Check for negation
|
280 |
+
contains_negation = any(
|
281 |
+
marker in sentence.lower().split() for marker in negation_markers
|
282 |
+
)
|
283 |
+
|
284 |
+
# Only include positive findings or explicitly negated findings that are important
|
285 |
+
if contains_finding_marker or (
|
286 |
+
contains_negation
|
287 |
+
and any(
|
288 |
+
term in sentence.lower()
|
289 |
+
for term in self.finding_severity.keys()
|
290 |
+
)
|
291 |
+
):
|
292 |
+
findings.append(sentence)
|
293 |
+
|
294 |
+
return findings
|
295 |
+
|
296 |
+
except Exception as e:
|
297 |
+
self.logger.error(f"Error extracting findings: {e}")
|
298 |
+
return []
|
299 |
+
|
300 |
+
def suggest_followup(self, text, entities, severity):
|
301 |
+
"""
|
302 |
+
Suggest follow-up actions based on report analysis.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
text (str): Medical report text
|
306 |
+
entities (dict): Extracted entities
|
307 |
+
severity (dict): Severity assessment
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
list: Suggested follow-up actions
|
311 |
+
"""
|
312 |
+
try:
|
313 |
+
followups = []
|
314 |
+
|
315 |
+
# Base recommendations on severity
|
316 |
+
severity_level = severity.get("level", "Unknown")
|
317 |
+
severity_score = severity.get("score", 0)
|
318 |
+
|
319 |
+
# Extract problems from entities
|
320 |
+
problems = entities.get("problem", [])
|
321 |
+
|
322 |
+
# Check if follow-up is already mentioned in the text
|
323 |
+
followup_mentioned = any(
|
324 |
+
phrase in text.lower()
|
325 |
+
for phrase in [
|
326 |
+
"follow up",
|
327 |
+
"follow-up",
|
328 |
+
"followup",
|
329 |
+
"return",
|
330 |
+
"refer",
|
331 |
+
"consult",
|
332 |
+
]
|
333 |
+
)
|
334 |
+
|
335 |
+
# Default recommendations based on severity
|
336 |
+
if severity_level == "Critical":
|
337 |
+
followups.append("Immediate specialist consultation recommended.")
|
338 |
+
|
339 |
+
elif severity_level == "Severe":
|
340 |
+
followups.append("Prompt follow-up with specialist is recommended.")
|
341 |
+
|
342 |
+
# Add specific recommendations for common severe conditions
|
343 |
+
for problem in problems:
|
344 |
+
if "pneumonia" in problem.lower():
|
345 |
+
followups.append(
|
346 |
+
"Consider antibiotic therapy and close monitoring."
|
347 |
+
)
|
348 |
+
elif "fracture" in problem.lower():
|
349 |
+
followups.append(
|
350 |
+
"Orthopedic consultation for treatment planning."
|
351 |
+
)
|
352 |
+
elif "mass" in problem.lower() or "tumor" in problem.lower():
|
353 |
+
followups.append(
|
354 |
+
"Further imaging and possible biopsy recommended."
|
355 |
+
)
|
356 |
+
|
357 |
+
elif severity_level == "Moderate":
|
358 |
+
followups.append("Follow-up with primary care physician recommended.")
|
359 |
+
if not followup_mentioned and problems:
|
360 |
+
followups.append(
|
361 |
+
"Consider additional imaging or tests for further evaluation."
|
362 |
+
)
|
363 |
+
|
364 |
+
elif severity_level == "Mild":
|
365 |
+
if problems:
|
366 |
+
followups.append(
|
367 |
+
"Routine follow-up with primary care physician as needed."
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
followups.append("No immediate follow-up required.")
|
371 |
+
|
372 |
+
else: # Normal
|
373 |
+
followups.append(
|
374 |
+
"No specific follow-up indicated based on this report."
|
375 |
+
)
|
376 |
+
|
377 |
+
# Check for specific findings that always need follow-up
|
378 |
+
for critical_term in ["mass", "tumor", "nodule", "opacity"]:
|
379 |
+
if (
|
380 |
+
critical_term in text.lower()
|
381 |
+
and "follow-up" not in " ".join(followups).lower()
|
382 |
+
):
|
383 |
+
followups.append(
|
384 |
+
f"Follow-up imaging recommended to monitor {critical_term}."
|
385 |
+
)
|
386 |
+
break
|
387 |
+
|
388 |
+
return followups
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
self.logger.error(f"Error suggesting follow-up: {e}")
|
392 |
+
return ["Unable to generate follow-up recommendations."]
|
393 |
+
|
394 |
+
def analyze(self, text):
|
395 |
+
"""
|
396 |
+
Perform comprehensive analysis of medical report text.
|
397 |
+
|
398 |
+
Args:
|
399 |
+
text (str): Medical report text
|
400 |
+
|
401 |
+
Returns:
|
402 |
+
dict: Complete analysis results
|
403 |
+
"""
|
404 |
+
try:
|
405 |
+
# Extract entities
|
406 |
+
entities = self.extract_entities(text)
|
407 |
+
|
408 |
+
# Assess severity
|
409 |
+
severity = self.assess_severity(text)
|
410 |
+
|
411 |
+
# Extract key findings
|
412 |
+
findings = self.extract_findings(text)
|
413 |
+
|
414 |
+
# Generate follow-up suggestions
|
415 |
+
followups = self.suggest_followup(text, entities, severity)
|
416 |
+
|
417 |
+
# Create detailed report
|
418 |
+
report = {
|
419 |
+
"entities": entities,
|
420 |
+
"severity": severity,
|
421 |
+
"findings": findings,
|
422 |
+
"followup_recommendations": followups,
|
423 |
+
}
|
424 |
+
|
425 |
+
return report
|
426 |
+
|
427 |
+
except Exception as e:
|
428 |
+
self.logger.error(f"Error analyzing report: {e}")
|
429 |
+
return {"error": str(e)}
|
430 |
+
|
431 |
+
|
432 |
+
# Example usage
|
433 |
+
if __name__ == "__main__":
|
434 |
+
# Set up logging
|
435 |
+
logging.basicConfig(level=logging.INFO)
|
436 |
+
|
437 |
+
# Test on a sample report
|
438 |
+
analyzer = MedicalReportAnalyzer()
|
439 |
+
|
440 |
+
sample_report = """
|
441 |
+
CHEST X-RAY EXAMINATION
|
442 |
+
|
443 |
+
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
444 |
+
|
445 |
+
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
446 |
+
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
447 |
+
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
448 |
+
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
449 |
+
|
450 |
+
IMPRESSION:
|
451 |
+
1. Mild cardiomegaly.
|
452 |
+
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
453 |
+
3. No acute pulmonary parenchymal abnormality.
|
454 |
+
|
455 |
+
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
456 |
+
"""
|
457 |
+
|
458 |
+
results = analyzer.analyze(sample_report)
|
459 |
+
|
460 |
+
print("\nMedical Report Analysis:")
|
461 |
+
print(
|
462 |
+
f"\nSeverity: {results['severity']['level']} (Score: {results['severity']['score']})"
|
463 |
+
)
|
464 |
+
|
465 |
+
print("\nKey Findings:")
|
466 |
+
for finding in results["findings"]:
|
467 |
+
print(f"- {finding}")
|
468 |
+
|
469 |
+
print("\nEntities:")
|
470 |
+
for category, items in results["entities"].items():
|
471 |
+
if items:
|
472 |
+
print(f"- {category.capitalize()}: {', '.join(items)}")
|
473 |
+
|
474 |
+
print("\nFollow-up Recommendations:")
|
475 |
+
for rec in results["followup_recommendations"]:
|
476 |
+
print(f"- {rec}")
|
mediSync/utils/__init__.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MediSync: Utils Module
|
3 |
+
=====================
|
4 |
+
|
5 |
+
This module contains utility functions for the MediSync system:
|
6 |
+
|
7 |
+
1. preprocessing: Functions for preprocessing images and text
|
8 |
+
2. visualization: Functions for visualizing analysis results
|
9 |
+
3. download_samples: Functions for downloading sample data
|
10 |
+
"""
|
11 |
+
|
12 |
+
from .preprocessing import (
|
13 |
+
enhance_xray_image,
|
14 |
+
extract_measurements,
|
15 |
+
extract_sections,
|
16 |
+
normalize_report_text,
|
17 |
+
preprocess_image,
|
18 |
+
)
|
19 |
+
from .visualization import (
|
20 |
+
create_heatmap_overlay,
|
21 |
+
figure_to_base64,
|
22 |
+
plot_image_prediction,
|
23 |
+
plot_multimodal_results,
|
24 |
+
plot_report_entities,
|
25 |
+
)
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
"preprocess_image",
|
29 |
+
"normalize_report_text",
|
30 |
+
"enhance_xray_image",
|
31 |
+
"extract_sections",
|
32 |
+
"extract_measurements",
|
33 |
+
"plot_image_prediction",
|
34 |
+
"plot_report_entities",
|
35 |
+
"plot_multimodal_results",
|
36 |
+
"create_heatmap_overlay",
|
37 |
+
"figure_to_base64",
|
38 |
+
]
|
mediSync/utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (1.07 kB). View file
|
|
mediSync/utils/__pycache__/download_samples.cpython-311.pyc
ADDED
Binary file (5.76 kB). View file
|
|
mediSync/utils/__pycache__/preprocessing.cpython-311.pyc
ADDED
Binary file (9.26 kB). View file
|
|
mediSync/utils/__pycache__/visualization.cpython-311.pyc
ADDED
Binary file (18 kB). View file
|
|
mediSync/utils/download_samples.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import urllib.request
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
# Set up logging
|
6 |
+
logging.basicConfig(
|
7 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
8 |
+
)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
# Sample X-ray image URLs (from public sources)
|
12 |
+
SAMPLE_IMAGES = [
|
13 |
+
# Normal chest X-ray
|
14 |
+
{
|
15 |
+
"url": "https://prod-images-static.radiopaedia.org/images/53448173/322830a37f0fa0852773ca2db3e8d8_big_gallery.jpeg",
|
16 |
+
"filename": "normal_chest_xray.jpg",
|
17 |
+
"description": "Normal chest X-ray",
|
18 |
+
},
|
19 |
+
# X-ray with pneumonia
|
20 |
+
{
|
21 |
+
"url": "https://prod-images-static.radiopaedia.org/images/52465460/e4d8791bd7502ab72af8d9e5c322db_big_gallery.jpg",
|
22 |
+
"filename": "pneumonia_xray.jpg",
|
23 |
+
"description": "X-ray with pneumonia",
|
24 |
+
},
|
25 |
+
# X-ray with cardiomegaly
|
26 |
+
{
|
27 |
+
"url": "https://prod-images-static.radiopaedia.org/images/556520/cf17c05750adb04b2a6e23afb47c7d_big_gallery.jpg",
|
28 |
+
"filename": "cardiomegaly_xray.jpg",
|
29 |
+
"description": "X-ray with cardiomegaly",
|
30 |
+
},
|
31 |
+
# X-ray with lung nodule
|
32 |
+
{
|
33 |
+
"url": "https://prod-images-static.radiopaedia.org/images/19972291/41eed1a2cdad06d26c3f415a6ed65a_big_gallery.jpeg",
|
34 |
+
"filename": "nodule_xray.jpg",
|
35 |
+
"description": "X-ray with lung nodule",
|
36 |
+
},
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
def download_sample_images(output_dir="data/sample"):
|
41 |
+
"""
|
42 |
+
Download sample X-ray images for testing.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
output_dir (str): Directory to save images
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
list: Paths to downloaded images
|
49 |
+
"""
|
50 |
+
# Get the directory of the script
|
51 |
+
script_dir = Path(__file__).resolve().parent.parent
|
52 |
+
|
53 |
+
# Create output directory if it doesn't exist
|
54 |
+
output_path = script_dir / output_dir
|
55 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
56 |
+
|
57 |
+
downloaded_paths = []
|
58 |
+
|
59 |
+
for image in SAMPLE_IMAGES:
|
60 |
+
try:
|
61 |
+
filename = image["filename"]
|
62 |
+
url = image["url"]
|
63 |
+
output_file = output_path / filename
|
64 |
+
|
65 |
+
# Skip if file already exists
|
66 |
+
if output_file.exists():
|
67 |
+
logger.info(f"File already exists: {output_file}")
|
68 |
+
downloaded_paths.append(str(output_file))
|
69 |
+
continue
|
70 |
+
|
71 |
+
# Download the image
|
72 |
+
logger.info(f"Downloading {url} to {output_file}")
|
73 |
+
|
74 |
+
# Set a user agent to avoid blocking
|
75 |
+
opener = urllib.request.build_opener()
|
76 |
+
opener.addheaders = [("User-Agent", "Mozilla/5.0")]
|
77 |
+
urllib.request.install_opener(opener)
|
78 |
+
|
79 |
+
# Download the file
|
80 |
+
urllib.request.urlretrieve(url, output_file)
|
81 |
+
|
82 |
+
logger.info(f"Successfully downloaded {filename}")
|
83 |
+
downloaded_paths.append(str(output_file))
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
logger.error(f"Error downloading {image['url']}: {e}")
|
87 |
+
|
88 |
+
logger.info(
|
89 |
+
f"Downloaded {len(downloaded_paths)} out of {len(SAMPLE_IMAGES)} images"
|
90 |
+
)
|
91 |
+
return downloaded_paths
|
92 |
+
|
93 |
+
|
94 |
+
def create_sample_info_file(output_dir="data/sample"):
|
95 |
+
"""
|
96 |
+
Create a text file with information about the sample images.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
output_dir (str): Directory with sample images
|
100 |
+
"""
|
101 |
+
# Get the directory of the script
|
102 |
+
script_dir = Path(__file__).resolve().parent.parent
|
103 |
+
|
104 |
+
# Output path
|
105 |
+
output_path = script_dir / output_dir
|
106 |
+
info_file = output_path / "sample_info.txt"
|
107 |
+
|
108 |
+
with open(info_file, "w") as f:
|
109 |
+
f.write("# Sample X-ray Images\n\n")
|
110 |
+
|
111 |
+
for image in SAMPLE_IMAGES:
|
112 |
+
f.write(f"## {image['filename']}\n")
|
113 |
+
f.write(f"Description: {image['description']}\n")
|
114 |
+
f.write(f"Source: {image['url']}\n\n")
|
115 |
+
|
116 |
+
f.write(
|
117 |
+
"\nThese images are used for testing and demonstration purposes only.\n"
|
118 |
+
)
|
119 |
+
f.write(
|
120 |
+
"Please note that these images are from public medical education sources.\n"
|
121 |
+
)
|
122 |
+
f.write("Do not use for clinical decision making.\n")
|
123 |
+
|
124 |
+
logger.info(f"Created sample info file: {info_file}")
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
# Download sample images
|
129 |
+
downloaded_paths = download_sample_images()
|
130 |
+
|
131 |
+
# Create info file
|
132 |
+
create_sample_info_file()
|
133 |
+
|
134 |
+
print(f"Downloaded {len(downloaded_paths)} sample images.")
|
135 |
+
print("Run the application with: python app.py")
|
mediSync/utils/preprocessing.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Set up logging
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
def preprocess_image(image_path, target_size=(224, 224)):
|
13 |
+
"""
|
14 |
+
Preprocess X-ray image for model input.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
image_path (str): Path to the X-ray image
|
18 |
+
target_size (tuple): Target size for resizing
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
PIL.Image: Preprocessed image
|
22 |
+
"""
|
23 |
+
try:
|
24 |
+
# Check if file exists
|
25 |
+
if not os.path.exists(image_path):
|
26 |
+
raise FileNotFoundError(f"Image file not found: {image_path}")
|
27 |
+
|
28 |
+
# Load image
|
29 |
+
image = Image.open(image_path)
|
30 |
+
|
31 |
+
# Convert grayscale to RGB if needed
|
32 |
+
if image.mode != "RGB":
|
33 |
+
image = image.convert("RGB")
|
34 |
+
|
35 |
+
# Resize image
|
36 |
+
image = image.resize(target_size, Image.LANCZOS)
|
37 |
+
|
38 |
+
return image
|
39 |
+
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Error preprocessing image: {e}")
|
42 |
+
raise
|
43 |
+
|
44 |
+
|
45 |
+
def enhance_xray_image(image_path, output_path=None, clahe_clip=2.0, clahe_grid=(8, 8)):
|
46 |
+
"""
|
47 |
+
Enhance X-ray image contrast using CLAHE (Contrast Limited Adaptive Histogram Equalization).
|
48 |
+
|
49 |
+
Args:
|
50 |
+
image_path (str): Path to the X-ray image
|
51 |
+
output_path (str, optional): Path to save enhanced image
|
52 |
+
clahe_clip (float): Clip limit for CLAHE
|
53 |
+
clahe_grid (tuple): Grid size for CLAHE
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
str or np.ndarray: Path to enhanced image or image array
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
# Read image
|
60 |
+
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
61 |
+
|
62 |
+
if img is None:
|
63 |
+
raise ValueError(f"Failed to read image: {image_path}")
|
64 |
+
|
65 |
+
# Create CLAHE object
|
66 |
+
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=clahe_grid)
|
67 |
+
|
68 |
+
# Apply CLAHE
|
69 |
+
enhanced = clahe.apply(img)
|
70 |
+
|
71 |
+
# Save enhanced image if output path is provided
|
72 |
+
if output_path:
|
73 |
+
cv2.imwrite(output_path, enhanced)
|
74 |
+
return output_path
|
75 |
+
else:
|
76 |
+
return enhanced
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error enhancing X-ray image: {e}")
|
80 |
+
raise
|
81 |
+
|
82 |
+
|
83 |
+
def normalize_report_text(text):
|
84 |
+
"""
|
85 |
+
Normalize medical report text for consistent processing.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
text (str): Medical report text
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
str: Normalized text
|
92 |
+
"""
|
93 |
+
try:
|
94 |
+
# Remove multiple whitespaces
|
95 |
+
text = re.sub(r"\s+", " ", text)
|
96 |
+
|
97 |
+
# Standardize section headers
|
98 |
+
section_patterns = {
|
99 |
+
r"(?i)clinical\s*(?:history|indication)": "CLINICAL HISTORY:",
|
100 |
+
r"(?i)technique": "TECHNIQUE:",
|
101 |
+
r"(?i)comparison": "COMPARISON:",
|
102 |
+
r"(?i)findings": "FINDINGS:",
|
103 |
+
r"(?i)impression": "IMPRESSION:",
|
104 |
+
r"(?i)recommendation": "RECOMMENDATION:",
|
105 |
+
r"(?i)comment": "COMMENT:",
|
106 |
+
}
|
107 |
+
|
108 |
+
for pattern, replacement in section_patterns.items():
|
109 |
+
text = re.sub(pattern + r"\s*:", replacement, text)
|
110 |
+
|
111 |
+
# Standardize common abbreviations
|
112 |
+
abbrev_patterns = {
|
113 |
+
r"(?i)\bw\/\b": "with",
|
114 |
+
r"(?i)\bw\/o\b": "without",
|
115 |
+
r"(?i)\bs\/p\b": "status post",
|
116 |
+
r"(?i)\bc\/w\b": "consistent with",
|
117 |
+
r"(?i)\br\/o\b": "rule out",
|
118 |
+
r"(?i)\bhx\b": "history",
|
119 |
+
r"(?i)\bdx\b": "diagnosis",
|
120 |
+
r"(?i)\btx\b": "treatment",
|
121 |
+
}
|
122 |
+
|
123 |
+
for pattern, replacement in abbrev_patterns.items():
|
124 |
+
text = re.sub(pattern, replacement, text)
|
125 |
+
|
126 |
+
return text.strip()
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Error normalizing report text: {e}")
|
130 |
+
return text # Return original text if normalization fails
|
131 |
+
|
132 |
+
|
133 |
+
def extract_sections(text):
|
134 |
+
"""
|
135 |
+
Extract sections from a medical report.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
text (str): Medical report text
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
dict: Dictionary of extracted sections
|
142 |
+
"""
|
143 |
+
try:
|
144 |
+
# Normalize text first
|
145 |
+
normalized_text = normalize_report_text(text)
|
146 |
+
|
147 |
+
# Define section patterns
|
148 |
+
section_headers = [
|
149 |
+
"CLINICAL HISTORY:",
|
150 |
+
"TECHNIQUE:",
|
151 |
+
"COMPARISON:",
|
152 |
+
"FINDINGS:",
|
153 |
+
"IMPRESSION:",
|
154 |
+
"RECOMMENDATION:",
|
155 |
+
]
|
156 |
+
|
157 |
+
# Find all section headers in the text
|
158 |
+
sections = {}
|
159 |
+
current_section = "PREAMBLE" # For text before first section header
|
160 |
+
sections[current_section] = []
|
161 |
+
|
162 |
+
for line in normalized_text.split("\n"):
|
163 |
+
section_found = False
|
164 |
+
|
165 |
+
for header in section_headers:
|
166 |
+
if header in line:
|
167 |
+
current_section = header.rstrip(":")
|
168 |
+
sections[current_section] = []
|
169 |
+
section_found = True
|
170 |
+
# Add the rest of the line after the header
|
171 |
+
content = line.split(header, 1)[1].strip()
|
172 |
+
if content:
|
173 |
+
sections[current_section].append(content)
|
174 |
+
break
|
175 |
+
|
176 |
+
if not section_found and current_section:
|
177 |
+
sections[current_section].append(line)
|
178 |
+
|
179 |
+
# Join each section's lines
|
180 |
+
for section, lines in sections.items():
|
181 |
+
sections[section] = " ".join(lines).strip()
|
182 |
+
|
183 |
+
# Remove empty sections
|
184 |
+
sections = {k: v for k, v in sections.items() if v}
|
185 |
+
|
186 |
+
return sections
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
logger.error(f"Error extracting sections: {e}")
|
190 |
+
return {"FULL_TEXT": text} # Return full text if extraction fails
|
191 |
+
|
192 |
+
|
193 |
+
def extract_measurements(text):
|
194 |
+
"""
|
195 |
+
Extract measurements from medical text (sizes, volumes, etc.).
|
196 |
+
|
197 |
+
Args:
|
198 |
+
text (str): Medical text
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
list: List of tuples containing (measurement, value, unit)
|
202 |
+
"""
|
203 |
+
try:
|
204 |
+
# Pattern for measurements like "5mm nodule" or "nodule measuring 5mm"
|
205 |
+
# or "8x10mm mass" or "mass of size 8x10mm"
|
206 |
+
size_pattern = r"(\d+(?:\.\d+)?(?:\s*[x×]\s*\d+(?:\.\d+)?)?(?:\s*[x×]\s*\d+(?:\.\d+)?)?)\s*(mm|cm|mm2|cm2|mm3|cm3|ml|cc)"
|
207 |
+
|
208 |
+
# Find measurements with context
|
209 |
+
context_pattern = (
|
210 |
+
r"([A-Za-z\s]+(?:mass|nodule|effusion|opacity|lesion|tumor|cyst|structure|area|region)[A-Za-z\s]*)"
|
211 |
+
+ size_pattern
|
212 |
+
)
|
213 |
+
|
214 |
+
context_measurements = []
|
215 |
+
for match in re.finditer(context_pattern, text, re.IGNORECASE):
|
216 |
+
context, size, unit = match.groups()
|
217 |
+
context_measurements.append((context.strip(), size, unit))
|
218 |
+
|
219 |
+
# For measurements without clear context, just extract size and unit
|
220 |
+
all_measurements = []
|
221 |
+
for match in re.finditer(size_pattern, text):
|
222 |
+
size, unit = match.groups()
|
223 |
+
all_measurements.append((size, unit))
|
224 |
+
|
225 |
+
return context_measurements
|
226 |
+
|
227 |
+
except Exception as e:
|
228 |
+
logger.error(f"Error extracting measurements: {e}")
|
229 |
+
return []
|
230 |
+
|
231 |
+
|
232 |
+
def prepare_sample_batch(image_paths, reports=None, target_size=(224, 224)):
|
233 |
+
"""
|
234 |
+
Prepare a batch of samples for model processing.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
image_paths (list): List of paths to images
|
238 |
+
reports (list, optional): List of corresponding reports
|
239 |
+
target_size (tuple): Target image size
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
tuple: Batch of preprocessed images and reports
|
243 |
+
"""
|
244 |
+
try:
|
245 |
+
processed_images = []
|
246 |
+
processed_reports = []
|
247 |
+
|
248 |
+
for i, image_path in enumerate(image_paths):
|
249 |
+
# Process image
|
250 |
+
image = preprocess_image(image_path, target_size)
|
251 |
+
processed_images.append(image)
|
252 |
+
|
253 |
+
# Process report if available
|
254 |
+
if reports and i < len(reports):
|
255 |
+
normalized_report = normalize_report_text(reports[i])
|
256 |
+
processed_reports.append(normalized_report)
|
257 |
+
|
258 |
+
return processed_images, processed_reports if reports else None
|
259 |
+
|
260 |
+
except Exception as e:
|
261 |
+
logger.error(f"Error preparing sample batch: {e}")
|
262 |
+
raise
|
mediSync/utils/visualization.py
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def plot_image_prediction(image, predictions, title=None, figsize=(10, 8)):
|
15 |
+
"""
|
16 |
+
Plot an image with its predictions.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
image (PIL.Image or str): Image or path to image
|
20 |
+
predictions (list): List of (label, probability) tuples
|
21 |
+
title (str, optional): Plot title
|
22 |
+
figsize (tuple): Figure size
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
matplotlib.figure.Figure: The figure object
|
26 |
+
"""
|
27 |
+
try:
|
28 |
+
# Load image if path is provided
|
29 |
+
if isinstance(image, str):
|
30 |
+
img = Image.open(image)
|
31 |
+
else:
|
32 |
+
img = image
|
33 |
+
|
34 |
+
# Create figure
|
35 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
|
36 |
+
|
37 |
+
# Plot image
|
38 |
+
ax1.imshow(img)
|
39 |
+
ax1.set_title("X-ray Image")
|
40 |
+
ax1.axis("off")
|
41 |
+
|
42 |
+
# Plot predictions
|
43 |
+
if predictions:
|
44 |
+
# Sort predictions by probability
|
45 |
+
sorted_pred = sorted(predictions, key=lambda x: x[1], reverse=True)
|
46 |
+
|
47 |
+
# Get top 5 predictions
|
48 |
+
top_n = min(5, len(sorted_pred))
|
49 |
+
labels = [pred[0] for pred in sorted_pred[:top_n]]
|
50 |
+
probs = [pred[1] for pred in sorted_pred[:top_n]]
|
51 |
+
|
52 |
+
# Plot horizontal bar chart
|
53 |
+
y_pos = np.arange(top_n)
|
54 |
+
ax2.barh(y_pos, probs, align="center")
|
55 |
+
ax2.set_yticks(y_pos)
|
56 |
+
ax2.set_yticklabels(labels)
|
57 |
+
ax2.set_xlabel("Probability")
|
58 |
+
ax2.set_title("Top Predictions")
|
59 |
+
ax2.set_xlim(0, 1)
|
60 |
+
|
61 |
+
# Annotate probabilities
|
62 |
+
for i, prob in enumerate(probs):
|
63 |
+
ax2.text(prob + 0.02, i, f"{prob:.1%}", va="center")
|
64 |
+
|
65 |
+
# Set overall title
|
66 |
+
if title:
|
67 |
+
fig.suptitle(title, fontsize=16)
|
68 |
+
|
69 |
+
fig.tight_layout()
|
70 |
+
return fig
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Error plotting image prediction: {e}")
|
74 |
+
# Create empty figure if error occurs
|
75 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
76 |
+
ax.text(0.5, 0.5, f"Error: {str(e)}", ha="center", va="center")
|
77 |
+
return fig
|
78 |
+
|
79 |
+
|
80 |
+
def create_heatmap_overlay(image, heatmap, alpha=0.4):
|
81 |
+
"""
|
82 |
+
Create a heatmap overlay on an X-ray image to highlight areas of interest.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
image (PIL.Image or str): Image or path to image
|
86 |
+
heatmap (numpy.ndarray): Heatmap array
|
87 |
+
alpha (float): Transparency of the overlay
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
PIL.Image: Image with heatmap overlay
|
91 |
+
"""
|
92 |
+
try:
|
93 |
+
# Load image if path is provided
|
94 |
+
if isinstance(image, str):
|
95 |
+
img = cv2.imread(image)
|
96 |
+
if img is None:
|
97 |
+
raise ValueError(f"Could not load image: {image}")
|
98 |
+
elif isinstance(image, Image.Image):
|
99 |
+
img = np.array(image)
|
100 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
101 |
+
else:
|
102 |
+
img = image
|
103 |
+
|
104 |
+
# Ensure image is in BGR format for OpenCV
|
105 |
+
if len(img.shape) == 2: # Grayscale
|
106 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
107 |
+
|
108 |
+
# Resize heatmap to match image dimensions
|
109 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
110 |
+
|
111 |
+
# Normalize heatmap (0-1)
|
112 |
+
heatmap = np.maximum(heatmap, 0)
|
113 |
+
heatmap = np.minimum(heatmap / np.max(heatmap), 1)
|
114 |
+
|
115 |
+
# Apply colormap (jet) to heatmap
|
116 |
+
heatmap = np.uint8(255 * heatmap)
|
117 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
118 |
+
|
119 |
+
# Create overlay
|
120 |
+
overlay = cv2.addWeighted(img, 1 - alpha, heatmap, alpha, 0)
|
121 |
+
|
122 |
+
# Convert back to PIL image
|
123 |
+
overlay = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
|
124 |
+
overlay_img = Image.fromarray(overlay)
|
125 |
+
|
126 |
+
return overlay_img
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Error creating heatmap overlay: {e}")
|
130 |
+
# Return original image if error occurs
|
131 |
+
if isinstance(image, str):
|
132 |
+
return Image.open(image)
|
133 |
+
elif isinstance(image, Image.Image):
|
134 |
+
return image
|
135 |
+
else:
|
136 |
+
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
137 |
+
|
138 |
+
|
139 |
+
def plot_report_entities(text, entities, figsize=(12, 8)):
|
140 |
+
"""
|
141 |
+
Visualize entities extracted from a medical report.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
text (str): Report text
|
145 |
+
entities (dict): Dictionary of entities by category
|
146 |
+
figsize (tuple): Figure size
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
matplotlib.figure.Figure: The figure object
|
150 |
+
"""
|
151 |
+
try:
|
152 |
+
fig, ax = plt.subplots(figsize=figsize)
|
153 |
+
ax.axis("off")
|
154 |
+
|
155 |
+
# Set background color
|
156 |
+
fig.patch.set_facecolor("#f8f9fa")
|
157 |
+
ax.set_facecolor("#f8f9fa")
|
158 |
+
|
159 |
+
# Title
|
160 |
+
ax.text(
|
161 |
+
0.5,
|
162 |
+
0.98,
|
163 |
+
"Medical Report Analysis",
|
164 |
+
ha="center",
|
165 |
+
va="top",
|
166 |
+
fontsize=18,
|
167 |
+
fontweight="bold",
|
168 |
+
color="#2c3e50",
|
169 |
+
)
|
170 |
+
|
171 |
+
# Display entity counts
|
172 |
+
y_pos = 0.9
|
173 |
+
ax.text(
|
174 |
+
0.05,
|
175 |
+
y_pos,
|
176 |
+
"Extracted Entities:",
|
177 |
+
fontsize=14,
|
178 |
+
fontweight="bold",
|
179 |
+
color="#2c3e50",
|
180 |
+
)
|
181 |
+
y_pos -= 0.05
|
182 |
+
|
183 |
+
# Define colors for different entity categories
|
184 |
+
category_colors = {
|
185 |
+
"problem": "#e74c3c", # Red
|
186 |
+
"test": "#3498db", # Blue
|
187 |
+
"treatment": "#2ecc71", # Green
|
188 |
+
"anatomy": "#9b59b6", # Purple
|
189 |
+
}
|
190 |
+
|
191 |
+
# Display entities by category
|
192 |
+
for category, items in entities.items():
|
193 |
+
if items:
|
194 |
+
y_pos -= 0.05
|
195 |
+
ax.text(
|
196 |
+
0.1,
|
197 |
+
y_pos,
|
198 |
+
f"{category.capitalize()}:",
|
199 |
+
fontsize=12,
|
200 |
+
fontweight="bold",
|
201 |
+
)
|
202 |
+
y_pos -= 0.05
|
203 |
+
ax.text(
|
204 |
+
0.15,
|
205 |
+
y_pos,
|
206 |
+
", ".join(items),
|
207 |
+
wrap=True,
|
208 |
+
fontsize=11,
|
209 |
+
color=category_colors.get(category, "black"),
|
210 |
+
)
|
211 |
+
|
212 |
+
# Add the report text with highlighted entities
|
213 |
+
y_pos -= 0.1
|
214 |
+
ax.text(
|
215 |
+
0.05,
|
216 |
+
y_pos,
|
217 |
+
"Report Text (with highlighted entities):",
|
218 |
+
fontsize=14,
|
219 |
+
fontweight="bold",
|
220 |
+
color="#2c3e50",
|
221 |
+
)
|
222 |
+
y_pos -= 0.05
|
223 |
+
|
224 |
+
# Get all entities to highlight
|
225 |
+
all_entities = []
|
226 |
+
for category, items in entities.items():
|
227 |
+
for item in items:
|
228 |
+
all_entities.append((item, category))
|
229 |
+
|
230 |
+
# Sort entities by length (longest first to avoid overlap issues)
|
231 |
+
all_entities.sort(key=lambda x: len(x[0]), reverse=True)
|
232 |
+
|
233 |
+
# Highlight entities in text
|
234 |
+
highlighted_text = text
|
235 |
+
for entity, category in all_entities:
|
236 |
+
# Escape regex special characters
|
237 |
+
entity_escaped = (
|
238 |
+
entity.replace("(", r"\(")
|
239 |
+
.replace(")", r"\)")
|
240 |
+
.replace("[", r"\[")
|
241 |
+
.replace("]", r"\]")
|
242 |
+
)
|
243 |
+
|
244 |
+
# Find entity in text (word boundary)
|
245 |
+
pattern = r"\b" + entity_escaped + r"\b"
|
246 |
+
color_code = category_colors.get(category, "black")
|
247 |
+
replacement = f"\\textcolor{{{color_code}}}{{{entity}}}"
|
248 |
+
highlighted_text = highlighted_text.replace(entity, replacement)
|
249 |
+
|
250 |
+
# Display highlighted text
|
251 |
+
ax.text(0.05, y_pos, highlighted_text, va="top", fontsize=10, wrap=True)
|
252 |
+
|
253 |
+
fig.tight_layout(rect=[0, 0.03, 1, 0.97])
|
254 |
+
return fig
|
255 |
+
|
256 |
+
except Exception as e:
|
257 |
+
logger.error(f"Error plotting report entities: {e}")
|
258 |
+
# Create empty figure if error occurs
|
259 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
260 |
+
ax.text(0.5, 0.5, f"Error: {str(e)}", ha="center", va="center")
|
261 |
+
return fig
|
262 |
+
|
263 |
+
|
264 |
+
def plot_multimodal_results(
|
265 |
+
fused_results, image=None, report_text=None, figsize=(12, 10)
|
266 |
+
):
|
267 |
+
"""
|
268 |
+
Visualize the results of multimodal analysis.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
fused_results (dict): Results from multimodal fusion
|
272 |
+
image (PIL.Image or str, optional): Image or path to image
|
273 |
+
report_text (str, optional): Report text
|
274 |
+
figsize (tuple): Figure size
|
275 |
+
|
276 |
+
Returns:
|
277 |
+
matplotlib.figure.Figure: The figure object
|
278 |
+
"""
|
279 |
+
try:
|
280 |
+
# Create figure with a grid layout
|
281 |
+
fig = plt.figure(figsize=figsize)
|
282 |
+
gs = fig.add_gridspec(2, 2)
|
283 |
+
|
284 |
+
# Add title
|
285 |
+
fig.suptitle(
|
286 |
+
"Multimodal Medical Analysis Results",
|
287 |
+
fontsize=18,
|
288 |
+
fontweight="bold",
|
289 |
+
y=0.98,
|
290 |
+
)
|
291 |
+
|
292 |
+
# 1. Overview panel (top left)
|
293 |
+
ax_overview = fig.add_subplot(gs[0, 0])
|
294 |
+
ax_overview.axis("off")
|
295 |
+
|
296 |
+
# Get severity info
|
297 |
+
severity = fused_results.get("severity", {})
|
298 |
+
severity_level = severity.get("level", "Unknown")
|
299 |
+
severity_score = severity.get("score", 0)
|
300 |
+
|
301 |
+
# Get primary finding
|
302 |
+
primary_finding = fused_results.get("primary_finding", "Unknown")
|
303 |
+
|
304 |
+
# Get agreement score
|
305 |
+
agreement = fused_results.get("agreement_score", 0)
|
306 |
+
|
307 |
+
# Create overview text
|
308 |
+
overview_text = [
|
309 |
+
"ANALYSIS OVERVIEW",
|
310 |
+
f"Primary Finding: {primary_finding}",
|
311 |
+
f"Severity Level: {severity_level} ({severity_score}/4)",
|
312 |
+
f"Agreement Score: {agreement:.0%}",
|
313 |
+
]
|
314 |
+
|
315 |
+
# Define severity colors
|
316 |
+
severity_colors = {
|
317 |
+
"Normal": "#2ecc71", # Green
|
318 |
+
"Mild": "#3498db", # Blue
|
319 |
+
"Moderate": "#f39c12", # Orange
|
320 |
+
"Severe": "#e74c3c", # Red
|
321 |
+
"Critical": "#c0392b", # Dark Red
|
322 |
+
}
|
323 |
+
|
324 |
+
# Add overview text to the panel
|
325 |
+
y_pos = 0.9
|
326 |
+
ax_overview.text(
|
327 |
+
0.5,
|
328 |
+
y_pos,
|
329 |
+
overview_text[0],
|
330 |
+
fontsize=14,
|
331 |
+
fontweight="bold",
|
332 |
+
ha="center",
|
333 |
+
va="center",
|
334 |
+
)
|
335 |
+
y_pos -= 0.15
|
336 |
+
|
337 |
+
ax_overview.text(
|
338 |
+
0.1, y_pos, overview_text[1], fontsize=12, ha="left", va="center"
|
339 |
+
)
|
340 |
+
y_pos -= 0.1
|
341 |
+
|
342 |
+
# Severity with color
|
343 |
+
severity_color = severity_colors.get(severity_level, "black")
|
344 |
+
ax_overview.text(
|
345 |
+
0.1, y_pos, "Severity Level:", fontsize=12, ha="left", va="center"
|
346 |
+
)
|
347 |
+
ax_overview.text(
|
348 |
+
0.4,
|
349 |
+
y_pos,
|
350 |
+
severity_level,
|
351 |
+
fontsize=12,
|
352 |
+
color=severity_color,
|
353 |
+
fontweight="bold",
|
354 |
+
ha="left",
|
355 |
+
va="center",
|
356 |
+
)
|
357 |
+
ax_overview.text(
|
358 |
+
0.6, y_pos, f"({severity_score}/4)", fontsize=10, ha="left", va="center"
|
359 |
+
)
|
360 |
+
y_pos -= 0.1
|
361 |
+
|
362 |
+
# Agreement score with color
|
363 |
+
agreement_color = (
|
364 |
+
"#2ecc71"
|
365 |
+
if agreement > 0.7
|
366 |
+
else "#f39c12"
|
367 |
+
if agreement > 0.4
|
368 |
+
else "#e74c3c"
|
369 |
+
)
|
370 |
+
ax_overview.text(
|
371 |
+
0.1, y_pos, "Agreement Score:", fontsize=12, ha="left", va="center"
|
372 |
+
)
|
373 |
+
ax_overview.text(
|
374 |
+
0.4,
|
375 |
+
y_pos,
|
376 |
+
f"{agreement:.0%}",
|
377 |
+
fontsize=12,
|
378 |
+
color=agreement_color,
|
379 |
+
fontweight="bold",
|
380 |
+
ha="left",
|
381 |
+
va="center",
|
382 |
+
)
|
383 |
+
|
384 |
+
# 2. Findings panel (top right)
|
385 |
+
ax_findings = fig.add_subplot(gs[0, 1])
|
386 |
+
ax_findings.axis("off")
|
387 |
+
|
388 |
+
# Get findings
|
389 |
+
findings = fused_results.get("findings", [])
|
390 |
+
|
391 |
+
# Add findings to the panel
|
392 |
+
y_pos = 0.9
|
393 |
+
ax_findings.text(
|
394 |
+
0.5,
|
395 |
+
y_pos,
|
396 |
+
"KEY FINDINGS",
|
397 |
+
fontsize=14,
|
398 |
+
fontweight="bold",
|
399 |
+
ha="center",
|
400 |
+
va="center",
|
401 |
+
)
|
402 |
+
y_pos -= 0.1
|
403 |
+
|
404 |
+
if findings:
|
405 |
+
for i, finding in enumerate(findings[:5]): # Limit to 5 findings
|
406 |
+
ax_findings.text(0.05, y_pos, "•", fontsize=14, ha="left", va="center")
|
407 |
+
ax_findings.text(
|
408 |
+
0.1, y_pos, finding, fontsize=11, ha="left", va="center", wrap=True
|
409 |
+
)
|
410 |
+
y_pos -= 0.15
|
411 |
+
else:
|
412 |
+
ax_findings.text(
|
413 |
+
0.1,
|
414 |
+
y_pos,
|
415 |
+
"No specific findings detailed.",
|
416 |
+
fontsize=11,
|
417 |
+
ha="left",
|
418 |
+
va="center",
|
419 |
+
)
|
420 |
+
|
421 |
+
# 3. Image panel (bottom left)
|
422 |
+
ax_image = fig.add_subplot(gs[1, 0])
|
423 |
+
|
424 |
+
if image is not None:
|
425 |
+
# Load image if path is provided
|
426 |
+
if isinstance(image, str):
|
427 |
+
img = Image.open(image)
|
428 |
+
else:
|
429 |
+
img = image
|
430 |
+
|
431 |
+
# Display image
|
432 |
+
ax_image.imshow(img)
|
433 |
+
ax_image.set_title("X-ray Image", fontsize=12)
|
434 |
+
else:
|
435 |
+
ax_image.text(0.5, 0.5, "No image available", ha="center", va="center")
|
436 |
+
|
437 |
+
ax_image.axis("off")
|
438 |
+
|
439 |
+
# 4. Recommendation panel (bottom right)
|
440 |
+
ax_rec = fig.add_subplot(gs[1, 1])
|
441 |
+
ax_rec.axis("off")
|
442 |
+
|
443 |
+
# Get recommendations
|
444 |
+
recommendations = fused_results.get("followup_recommendations", [])
|
445 |
+
|
446 |
+
# Add recommendations to the panel
|
447 |
+
y_pos = 0.9
|
448 |
+
ax_rec.text(
|
449 |
+
0.5,
|
450 |
+
y_pos,
|
451 |
+
"RECOMMENDATIONS",
|
452 |
+
fontsize=14,
|
453 |
+
fontweight="bold",
|
454 |
+
ha="center",
|
455 |
+
va="center",
|
456 |
+
)
|
457 |
+
y_pos -= 0.1
|
458 |
+
|
459 |
+
if recommendations:
|
460 |
+
for i, rec in enumerate(recommendations):
|
461 |
+
ax_rec.text(0.05, y_pos, "•", fontsize=14, ha="left", va="center")
|
462 |
+
ax_rec.text(
|
463 |
+
0.1, y_pos, rec, fontsize=11, ha="left", va="center", wrap=True
|
464 |
+
)
|
465 |
+
y_pos -= 0.15
|
466 |
+
else:
|
467 |
+
ax_rec.text(
|
468 |
+
0.1,
|
469 |
+
y_pos,
|
470 |
+
"No specific recommendations provided.",
|
471 |
+
fontsize=11,
|
472 |
+
ha="left",
|
473 |
+
va="center",
|
474 |
+
)
|
475 |
+
|
476 |
+
# Add disclaimer
|
477 |
+
fig.text(
|
478 |
+
0.5,
|
479 |
+
0.03,
|
480 |
+
"DISCLAIMER: This analysis is for informational purposes only and should not replace professional medical advice.",
|
481 |
+
fontsize=9,
|
482 |
+
style="italic",
|
483 |
+
ha="center",
|
484 |
+
)
|
485 |
+
|
486 |
+
fig.tight_layout(rect=[0, 0.05, 1, 0.95])
|
487 |
+
return fig
|
488 |
+
|
489 |
+
except Exception as e:
|
490 |
+
logger.error(f"Error plotting multimodal results: {e}")
|
491 |
+
# Create empty figure if error occurs
|
492 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
493 |
+
ax.text(0.5, 0.5, f"Error: {str(e)}", ha="center", va="center")
|
494 |
+
return fig
|
495 |
+
|
496 |
+
|
497 |
+
def figure_to_base64(fig):
|
498 |
+
"""
|
499 |
+
Convert matplotlib figure to base64 string.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
fig (matplotlib.figure.Figure): Figure object
|
503 |
+
|
504 |
+
Returns:
|
505 |
+
str: Base64 encoded string
|
506 |
+
"""
|
507 |
+
try:
|
508 |
+
buf = io.BytesIO()
|
509 |
+
fig.savefig(buf, format="png", bbox_inches="tight")
|
510 |
+
buf.seek(0)
|
511 |
+
img_str = base64.b64encode(buf.read()).decode("utf-8")
|
512 |
+
return img_str
|
513 |
+
|
514 |
+
except Exception as e:
|
515 |
+
logger.error(f"Error converting figure to base64: {e}")
|
516 |
+
return ""
|