Spaces:
Sleeping
Sleeping
amitpress
commited on
Commit
·
0c0d46a
1
Parent(s):
e709e21
init
Browse files- app.py +77 -0
- best.keras +3 -0
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 8 |
+
# Load your pre-trained Keras model
|
| 9 |
+
model = tf.keras.models.load_model("./best.keras")
|
| 10 |
+
|
| 11 |
+
# scale the data
|
| 12 |
+
def create_scaler(df):
|
| 13 |
+
scaler = MinMaxScaler(feature_range=(0,1))
|
| 14 |
+
scaled_df = scaler.fit_transform(df['Close'].values.reshape(-1, 1))
|
| 15 |
+
return scaler, scaled_df
|
| 16 |
+
# create input output sequence
|
| 17 |
+
def create_sequence(scaled_df):
|
| 18 |
+
X, y = [], []
|
| 19 |
+
window = 60
|
| 20 |
+
n_future = 1
|
| 21 |
+
for i in range(len(scaled_df) - window - n_future - 1):
|
| 22 |
+
X.append(scaled_df[i:i+window])
|
| 23 |
+
y.append(scaled_df[i+window+n_future])
|
| 24 |
+
X = np.array(X)
|
| 25 |
+
y = np.array(y)
|
| 26 |
+
return X, y
|
| 27 |
+
|
| 28 |
+
def fetch_and_predict(ticker, period):
|
| 29 |
+
# Fetch historical stock data using yfinance
|
| 30 |
+
try:
|
| 31 |
+
df = yf.download(ticker, period=period)
|
| 32 |
+
if isinstance(df.columns, pd.MultiIndex):
|
| 33 |
+
df.columns = df.columns.get_level_values(0)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print("check 2")
|
| 36 |
+
return f"Error downloading data: {e}"
|
| 37 |
+
|
| 38 |
+
# Check if we have enough data for predictions
|
| 39 |
+
|
| 40 |
+
if df.shape[0] < 60:
|
| 41 |
+
return "Not enough data for predictions. Please select a longer period."
|
| 42 |
+
|
| 43 |
+
# prepare data
|
| 44 |
+
scaler, df = create_scaler(df)
|
| 45 |
+
X, y = create_sequence(df)
|
| 46 |
+
# Predicting stock prices
|
| 47 |
+
try:
|
| 48 |
+
print("fine")
|
| 49 |
+
yhat = model.predict(X)
|
| 50 |
+
except Exception as e:
|
| 51 |
+
return f"Error during prediction: {e}"
|
| 52 |
+
# Plot the predicted prices
|
| 53 |
+
plt.figure(figsize=(14, 7))
|
| 54 |
+
plt.plot(y, label='Actual Prices')
|
| 55 |
+
plt.plot(yhat, label='Predicted Prices')
|
| 56 |
+
plt.title(f'Stock Price Prediction (LSTM) - [{str(ticker)}]')
|
| 57 |
+
plt.xlabel('Time')
|
| 58 |
+
plt.ylabel('Stock Price')
|
| 59 |
+
plt.legend()
|
| 60 |
+
plt.xticks(rotation=45)
|
| 61 |
+
return plt.gcf()
|
| 62 |
+
|
| 63 |
+
interface = gr.Interface(
|
| 64 |
+
fn=fetch_and_predict,
|
| 65 |
+
inputs=[
|
| 66 |
+
gr.Textbox(label="Stock Ticker", placeholder="Enter stock ticker (e.g., DAL, AAPL)"),
|
| 67 |
+
gr.Textbox(label="Period", placeholder="Enter period (e.g., '1y')")
|
| 68 |
+
],
|
| 69 |
+
outputs=gr.Plot(),
|
| 70 |
+
live=False,
|
| 71 |
+
allow_flagging="never",
|
| 72 |
+
title="Stock Price Prediction",
|
| 73 |
+
description="Enter the stock ticker and period, then click the button to fetch data and predict prices.",
|
| 74 |
+
theme="huggingface",
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
interface.launch()
|
best.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9f5adbd0e6c4bc1bfe8b553596f050976ab95fcd19a4cd4b4f53914441650c3
|
| 3 |
+
size 430225
|