Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,8 @@ base_model_id = "Andres77872/SmolVLM-500M-anime-caption-v0.1"
|
|
9 |
processor = AutoProcessor.from_pretrained(base_model_id)
|
10 |
model = Idefics3ForConditionalGeneration.from_pretrained(
|
11 |
base_model_id,
|
12 |
-
device_map="auto",
|
13 |
torch_dtype=torch.bfloat16
|
14 |
-
)
|
15 |
|
16 |
class StopOnTokens(StoppingCriteria):
|
17 |
def __init__(self, tokenizer, stop_sequence):
|
@@ -26,7 +25,12 @@ class StopOnTokens(StoppingCriteria):
|
|
26 |
new_text = new_text[-max_keep:]
|
27 |
return self.stop_sequence in new_text
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
question = "describe the image"
|
31 |
messages = [
|
32 |
{
|
@@ -44,13 +48,7 @@ def prepare_inputs(image: Image.Image):
|
|
44 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
45 |
inputs = processor(text=[prompt], images=[[image]], return_tensors='pt', padding=True, size=size)
|
46 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
47 |
-
|
48 |
-
|
49 |
-
def caption_anime_image_stream(image):
|
50 |
-
if image is None:
|
51 |
-
yield "Please upload an image."
|
52 |
-
return
|
53 |
-
inputs = prepare_inputs(image)
|
54 |
stop_sequence = "</QUERY>"
|
55 |
streamer = TextIteratorStreamer(
|
56 |
processor.tokenizer,
|
|
|
9 |
processor = AutoProcessor.from_pretrained(base_model_id)
|
10 |
model = Idefics3ForConditionalGeneration.from_pretrained(
|
11 |
base_model_id,
|
|
|
12 |
torch_dtype=torch.bfloat16
|
13 |
+
).to("cuda:0")
|
14 |
|
15 |
class StopOnTokens(StoppingCriteria):
|
16 |
def __init__(self, tokenizer, stop_sequence):
|
|
|
25 |
new_text = new_text[-max_keep:]
|
26 |
return self.stop_sequence in new_text
|
27 |
|
28 |
+
@spaces.GPU
|
29 |
+
def caption_anime_image_stream(image):
|
30 |
+
if image is None:
|
31 |
+
yield "Please upload an image."
|
32 |
+
return
|
33 |
+
|
34 |
question = "describe the image"
|
35 |
messages = [
|
36 |
{
|
|
|
48 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
49 |
inputs = processor(text=[prompt], images=[[image]], return_tensors='pt', padding=True, size=size)
|
50 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
stop_sequence = "</QUERY>"
|
53 |
streamer = TextIteratorStreamer(
|
54 |
processor.tokenizer,
|