Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,93 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList
|
6 |
|
7 |
+
base_model_id = "Andres77872/SmolVLM-500M-anime-caption-v0.1"
|
|
|
8 |
|
9 |
+
processor = AutoProcessor.from_pretrained(base_model_id)
|
10 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(
|
11 |
+
base_model_id,
|
12 |
+
device_map="auto",
|
13 |
+
torch_dtype=torch.bfloat16
|
14 |
+
)
|
15 |
+
|
16 |
+
class StopOnTokens(StoppingCriteria):
|
17 |
+
def __init__(self, tokenizer, stop_sequence):
|
18 |
+
super().__init__()
|
19 |
+
self.tokenizer = tokenizer
|
20 |
+
self.stop_sequence = stop_sequence
|
21 |
+
|
22 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
23 |
+
new_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
24 |
+
max_keep = len(self.stop_sequence) + 10
|
25 |
+
if len(new_text) > max_keep:
|
26 |
+
new_text = new_text[-max_keep:]
|
27 |
+
return self.stop_sequence in new_text
|
28 |
+
|
29 |
+
def prepare_inputs(image: Image.Image):
|
30 |
+
question = "describe the image"
|
31 |
+
messages = [
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": [
|
35 |
+
{"type": "image"},
|
36 |
+
{"type": "text", "text": question}
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
max_image_size = processor.image_processor.max_image_size["longest_edge"]
|
41 |
+
size = processor.image_processor.size.copy()
|
42 |
+
if "longest_edge" in size and size["longest_edge"] > max_image_size:
|
43 |
+
size["longest_edge"] = max_image_size
|
44 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
45 |
+
inputs = processor(text=[prompt], images=[[image]], return_tensors='pt', padding=True, size=size)
|
46 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
47 |
+
return inputs
|
48 |
+
|
49 |
+
def caption_anime_image_stream(image):
|
50 |
+
if image is None:
|
51 |
+
yield "Please upload an image."
|
52 |
+
return
|
53 |
+
inputs = prepare_inputs(image)
|
54 |
+
stop_sequence = "</QUERY>"
|
55 |
+
streamer = TextIteratorStreamer(
|
56 |
+
processor.tokenizer,
|
57 |
+
skip_prompt=True,
|
58 |
+
skip_special_tokens=True,
|
59 |
+
)
|
60 |
+
custom_stopping_criteria = StoppingCriteriaList([
|
61 |
+
StopOnTokens(processor.tokenizer, stop_sequence)
|
62 |
+
])
|
63 |
+
with torch.no_grad():
|
64 |
+
generation_kwargs = dict(
|
65 |
+
**inputs,
|
66 |
+
streamer=streamer,
|
67 |
+
do_sample=False,
|
68 |
+
max_new_tokens=512,
|
69 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
70 |
+
stopping_criteria=custom_stopping_criteria,
|
71 |
+
)
|
72 |
+
import threading
|
73 |
+
generation_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
74 |
+
generation_thread.start()
|
75 |
+
caption = ""
|
76 |
+
for new_text in streamer:
|
77 |
+
caption += new_text
|
78 |
+
yield caption.strip()
|
79 |
+
generation_thread.join()
|
80 |
+
|
81 |
+
demo = gr.Interface(
|
82 |
+
caption_anime_image_stream,
|
83 |
+
inputs=gr.Image(type="pil", label="Anime Image"),
|
84 |
+
outputs=gr.Textbox(lines=8, label="Caption"),
|
85 |
+
title="SmolVLM-500M-Anime-Caption Demo",
|
86 |
+
description="Upload an anime-style image to generate a caption.",
|
87 |
+
# Enable live streaming:
|
88 |
+
allow_flagging="auto",
|
89 |
+
examples=None,
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.queue()
|
93 |
+
demo.launch()
|