Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the model and tokenizer for English to Hawaiian Pidgin translation | |
tokenizer = AutoTokenizer.from_pretrained("claudiatang/flan-t5-base-eng-hwp") | |
model = AutoModelForSeq2SeqLM.from_pretrained("claudiatang/flan-t5-base-eng-hwp") | |
def translate_to_hawaiian(text): | |
# Add language direction instruction | |
input_text = f"translate English to Hawaiian Pidgin: {text}" | |
# Encoding the input text for the model | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) | |
# Generate translation using the model | |
translated = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True) | |
# Decode the generated token IDs into a string | |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
# Streamlit interface | |
st.title("Hawaiian Pidgin Translator") | |
st.write("This app translates English text to Hawaiian Pidgin using a language model.") | |
# Input text from the user | |
text_input = st.text_area("Enter text to translate:") | |
# Translate and display the result | |
if text_input: | |
translation = translate_to_hawaiian(text_input) | |
st.subheader("Translation:") | |
st.write(translation) | |