test2 / app.py
Aneeth's picture
Update app.py
a240210 verified
import gradio as gr
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, GPTQConfig, GenerationConfig
from peft import AutoPeftModelForCausalLM
from transformers import GenerationConfig
from transformers import AutoTokenizer, GPTQConfig
import torch
gptq_config = GPTQConfig(bits=4, disable_exllama=True)
model = AutoPeftModelForCausalLM.from_pretrained(
"Aneeth/zephyr_10k",
return_dict=True,
torch_dtype=torch.float32,
trust_remote_code=True,
quantization_config=gptq_config
)
tokenizer = AutoTokenizer.from_pretrained("Aneeth/zephyr_10k")
generation_config = GenerationConfig(
do_sample=True,
top_k=1,
temperature=0.5,
max_new_tokens=5000,
pad_token_id=tokenizer.eos_token_id,
)
def process_data_sample(example):
processed_example = "\n Generate an authentic job description using the given input.\n\n" + example["instruction"] + "\n\n"
return processed_example
def generate_text(prompt):
inp_str = process_data_sample({"instruction": prompt})
inputs = tokenizer(inp_str, return_tensors="pt").to("cpu")
outputs = model.generate(**inputs, generation_config=generation_config)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", live=True)
iface.launch()