Update app.py
Browse files
app.py
CHANGED
@@ -13,19 +13,22 @@ DEPLOY_MODELS = {}
|
|
13 |
IMAGE_TOKEN = "<image>"
|
14 |
|
15 |
# Fetch model
|
16 |
-
def fetch_model(model_name: str, dtype=
|
17 |
global DEPLOY_MODELS
|
18 |
if model_name not in DEPLOY_MODELS:
|
19 |
-
|
20 |
-
# Use bfloat16 only if using GPU
|
21 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
22 |
-
|
23 |
-
logger.info(f"Loading {model_name} on {device} with dtype={dtype}...")
|
24 |
model_info = load_model(model_name, dtype=dtype)
|
25 |
tokenizer, model, vl_chat_processor = model_info
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
DEPLOY_MODELS[model_name] = (tokenizer, model, vl_chat_processor)
|
28 |
-
logger.info(f"Loaded {model_name}
|
29 |
return DEPLOY_MODELS[model_name]
|
30 |
|
31 |
|
|
|
13 |
IMAGE_TOKEN = "<image>"
|
14 |
|
15 |
# Fetch model
|
16 |
+
def fetch_model(model_name: str, dtype=torch.bfloat16):
|
17 |
global DEPLOY_MODELS
|
18 |
if model_name not in DEPLOY_MODELS:
|
19 |
+
logger.info(f"Loading {model_name}...")
|
|
|
|
|
|
|
|
|
20 |
model_info = load_model(model_name, dtype=dtype)
|
21 |
tokenizer, model, vl_chat_processor = model_info
|
22 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
try:
|
24 |
+
model = model.to(device)
|
25 |
+
except RuntimeError as e:
|
26 |
+
logger.warning(f"Could not move model to {device}: {e}")
|
27 |
+
device = torch.device('cpu')
|
28 |
+
model = model.to(device)
|
29 |
+
logger.warning("Model fallback to CPU. Inference might be slow.")
|
30 |
DEPLOY_MODELS[model_name] = (tokenizer, model, vl_chat_processor)
|
31 |
+
logger.info(f"Loaded {model_name} on {device}")
|
32 |
return DEPLOY_MODELS[model_name]
|
33 |
|
34 |
|