Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
import logging
|
6 |
+
from typing import List
|
7 |
+
import time
|
8 |
+
import requests
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import io
|
11 |
+
import tempfile
|
12 |
+
import os
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
class ContentQuestionGenerator:
|
20 |
+
def __init__(self):
|
21 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
logger.info(f"Using device: {self.device}")
|
23 |
+
|
24 |
+
self.summarizer = pipeline(
|
25 |
+
"summarization",
|
26 |
+
model="facebook/bart-large-cnn",
|
27 |
+
device=0 if self.device == "cuda" else -1
|
28 |
+
)
|
29 |
+
|
30 |
+
self.question_generator = pipeline(
|
31 |
+
"text2text-generation",
|
32 |
+
model="lmqg/t5-base-squad-qg",
|
33 |
+
device=0 if self.device == "cuda" else -1
|
34 |
+
)
|
35 |
+
|
36 |
+
def process_large_pdf(self, file_obj, chunk_size=50) -> str:
|
37 |
+
"""Process large PDF files in chunks."""
|
38 |
+
try:
|
39 |
+
# Create a temporary file to store the PDF
|
40 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
|
41 |
+
if isinstance(file_obj, bytes):
|
42 |
+
temp_file.write(file_obj)
|
43 |
+
else:
|
44 |
+
temp_file.write(file_obj.read())
|
45 |
+
temp_file_path = temp_file.name
|
46 |
+
|
47 |
+
# Open the PDF with PyPDF2
|
48 |
+
with open(temp_file_path, 'rb') as file:
|
49 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
50 |
+
total_pages = len(pdf_reader.pages)
|
51 |
+
logger.info(f"Processing PDF with {total_pages} pages")
|
52 |
+
|
53 |
+
all_text = []
|
54 |
+
# Process pages in chunks
|
55 |
+
for i in range(0, total_pages, chunk_size):
|
56 |
+
chunk_text = ""
|
57 |
+
end_page = min(i + chunk_size, total_pages)
|
58 |
+
|
59 |
+
logger.info(f"Processing pages {i+1} to {end_page}")
|
60 |
+
for page_num in range(i, end_page):
|
61 |
+
try:
|
62 |
+
page = pdf_reader.pages[page_num]
|
63 |
+
chunk_text += page.extract_text() + "\n"
|
64 |
+
except Exception as e:
|
65 |
+
logger.warning(f"Error extracting text from page {page_num + 1}: {str(e)}")
|
66 |
+
continue
|
67 |
+
|
68 |
+
if chunk_text.strip():
|
69 |
+
all_text.append(chunk_text)
|
70 |
+
|
71 |
+
# Free up memory
|
72 |
+
del chunk_text
|
73 |
+
|
74 |
+
# Clean up temporary file
|
75 |
+
os.unlink(temp_file_path)
|
76 |
+
|
77 |
+
return "\n".join(all_text)
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Error processing large PDF: {str(e)}")
|
81 |
+
if 'temp_file_path' in locals():
|
82 |
+
try:
|
83 |
+
os.unlink(temp_file_path)
|
84 |
+
except:
|
85 |
+
pass
|
86 |
+
raise
|
87 |
+
|
88 |
+
def extract_text_from_url(self, url: str) -> str:
|
89 |
+
"""Extract text content from a webpage."""
|
90 |
+
try:
|
91 |
+
headers = {
|
92 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
93 |
+
}
|
94 |
+
|
95 |
+
response = requests.get(url, headers=headers, timeout=30)
|
96 |
+
response.raise_for_status()
|
97 |
+
|
98 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
99 |
+
|
100 |
+
# Remove unwanted elements
|
101 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside']):
|
102 |
+
element.decompose()
|
103 |
+
|
104 |
+
# Handle Wikipedia specifically
|
105 |
+
if 'wikipedia.org' in url:
|
106 |
+
main_content = soup.find('div', {'id': 'mw-content-text'})
|
107 |
+
text = ' '.join([p.get_text() for p in (main_content or soup).find_all('p')])
|
108 |
+
else:
|
109 |
+
text = ' '.join([p.get_text() for p in soup.find_all('p')])
|
110 |
+
|
111 |
+
text = ' '.join(text.split())
|
112 |
+
|
113 |
+
if not text.strip():
|
114 |
+
raise ValueError("No text content could be extracted from the URL")
|
115 |
+
|
116 |
+
return text.strip()
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Error extracting text from URL: {str(e)}")
|
120 |
+
raise ValueError(f"Could not extract text from URL: {str(e)}")
|
121 |
+
|
122 |
+
def chunk_text(self, text: str, max_chunk_size: int = 1024) -> List[str]:
|
123 |
+
"""Split text into chunks for processing."""
|
124 |
+
chunks = []
|
125 |
+
current_chunk = []
|
126 |
+
current_size = 0
|
127 |
+
|
128 |
+
for sentence in text.split('.'):
|
129 |
+
sentence = sentence.strip() + '.'
|
130 |
+
if current_size + len(sentence) + 1 <= max_chunk_size:
|
131 |
+
current_chunk.append(sentence)
|
132 |
+
current_size += len(sentence) + 1
|
133 |
+
else:
|
134 |
+
if current_chunk:
|
135 |
+
chunks.append(' '.join(current_chunk))
|
136 |
+
current_chunk = [sentence]
|
137 |
+
current_size = len(sentence) + 1
|
138 |
+
|
139 |
+
if current_chunk:
|
140 |
+
chunks.append(' '.join(current_chunk))
|
141 |
+
|
142 |
+
return chunks
|
143 |
+
|
144 |
+
def summarize_text(self, text: str) -> str:
|
145 |
+
"""Summarize text with memory-efficient chunking."""
|
146 |
+
chunks = self.chunk_text(text)
|
147 |
+
summaries = []
|
148 |
+
|
149 |
+
for chunk in tqdm(chunks, desc="Summarizing text"):
|
150 |
+
if len(chunk.strip()) > 50:
|
151 |
+
try:
|
152 |
+
summary = self.summarizer(chunk,
|
153 |
+
max_length=150,
|
154 |
+
min_length=40,
|
155 |
+
do_sample=False)[0]['summary_text']
|
156 |
+
summaries.append(summary)
|
157 |
+
except Exception as e:
|
158 |
+
logger.warning(f"Error summarizing chunk: {str(e)}")
|
159 |
+
continue
|
160 |
+
|
161 |
+
# Free up memory
|
162 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
163 |
+
|
164 |
+
return " ".join(summaries)
|
165 |
+
|
166 |
+
def generate_questions(self, text: str, num_questions: int = 20) -> List[str]:
|
167 |
+
"""Generate diverse questions with memory management."""
|
168 |
+
try:
|
169 |
+
all_questions = set() # Use set to ensure uniqueness
|
170 |
+
sentences = text.split('.')
|
171 |
+
|
172 |
+
for sentence in tqdm(sentences, desc="Generating questions"):
|
173 |
+
if len(all_questions) >= num_questions * 2:
|
174 |
+
break
|
175 |
+
|
176 |
+
if len(sentence.strip()) > 30:
|
177 |
+
try:
|
178 |
+
generated = self.question_generator(
|
179 |
+
sentence.strip(),
|
180 |
+
max_length=64,
|
181 |
+
num_return_sequences=2,
|
182 |
+
do_sample=True,
|
183 |
+
temperature=0.8
|
184 |
+
)
|
185 |
+
|
186 |
+
for gen in generated:
|
187 |
+
question = gen['generated_text'].strip()
|
188 |
+
if question.endswith('?') and len(question.split()) > 3:
|
189 |
+
all_questions.add(question)
|
190 |
+
|
191 |
+
# Free up memory
|
192 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
logger.warning(f"Error generating question: {str(e)}")
|
196 |
+
continue
|
197 |
+
|
198 |
+
# Convert to list and randomize
|
199 |
+
questions_list = list(all_questions)
|
200 |
+
import random
|
201 |
+
random.shuffle(questions_list)
|
202 |
+
|
203 |
+
return questions_list[:num_questions]
|
204 |
+
|
205 |
+
except Exception as e:
|
206 |
+
logger.error(f"Error generating questions: {str(e)}")
|
207 |
+
raise
|
208 |
+
|
209 |
+
def process_input(self, input_data) -> str:
|
210 |
+
"""Process either PDF file or URL with progress tracking."""
|
211 |
+
try:
|
212 |
+
start_time = time.time()
|
213 |
+
|
214 |
+
# Extract text based on input type
|
215 |
+
if isinstance(input_data, str) and (input_data.startswith('http://') or input_data.startswith('https://')):
|
216 |
+
logger.info("Processing URL content...")
|
217 |
+
text = self.extract_text_from_url(input_data)
|
218 |
+
else:
|
219 |
+
logger.info("Processing PDF content...")
|
220 |
+
text = self.process_large_pdf(input_data)
|
221 |
+
|
222 |
+
logger.info(f"Extracted {len(text)} characters of text")
|
223 |
+
|
224 |
+
# Process in chunks with memory management
|
225 |
+
logger.info("Summarizing content...")
|
226 |
+
summarized_text = self.summarize_text(text)
|
227 |
+
logger.info(f"Summarized to {len(summarized_text)} characters")
|
228 |
+
|
229 |
+
logger.info("Generating questions...")
|
230 |
+
questions = self.generate_questions(summarized_text)
|
231 |
+
logger.info(f"Generated {len(questions)} questions")
|
232 |
+
|
233 |
+
if not questions:
|
234 |
+
return "Could not generate any valid questions from the content."
|
235 |
+
|
236 |
+
formatted_output = "\n".join(f"{i+1}. {q}" for i, q in enumerate(questions))
|
237 |
+
processing_time = time.time() - start_time
|
238 |
+
logger.info(f"Total processing time: {processing_time:.2f} seconds")
|
239 |
+
|
240 |
+
return formatted_output
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
error_msg = f"Error processing input: {str(e)}"
|
244 |
+
logger.error(error_msg)
|
245 |
+
return f"An error occurred: {error_msg}"
|
246 |
+
|
247 |
+
def create_gradio_interface():
|
248 |
+
"""Create and configure Gradio interface."""
|
249 |
+
generator = ContentQuestionGenerator()
|
250 |
+
|
251 |
+
def process_input(file, url):
|
252 |
+
if file is None and not url:
|
253 |
+
return "Please provide either a PDF file or a webpage URL."
|
254 |
+
if file is not None and url:
|
255 |
+
return "Please provide either a PDF file or a URL, not both."
|
256 |
+
|
257 |
+
try:
|
258 |
+
if url:
|
259 |
+
if not (url.startswith('http://') or url.startswith('https://')):
|
260 |
+
return "Please provide a valid URL starting with http:// or https://"
|
261 |
+
return generator.process_input(url)
|
262 |
+
|
263 |
+
return generator.process_input(file)
|
264 |
+
|
265 |
+
except Exception as e:
|
266 |
+
logger.error("Error processing input:", exc_info=True)
|
267 |
+
return f"Error processing input: {str(e)}"
|
268 |
+
|
269 |
+
interface = gr.Interface(
|
270 |
+
fn=process_input,
|
271 |
+
inputs=[
|
272 |
+
gr.File(
|
273 |
+
label="Upload PDF Document",
|
274 |
+
type="binary",
|
275 |
+
file_types=[".pdf"],
|
276 |
+
file_count="single"
|
277 |
+
),
|
278 |
+
gr.Textbox(
|
279 |
+
label="Or enter webpage URL",
|
280 |
+
placeholder="https://example.com/page or https://en.wikipedia.org/wiki/Topic"
|
281 |
+
)
|
282 |
+
],
|
283 |
+
outputs=gr.Textbox(
|
284 |
+
label="Generated Questions",
|
285 |
+
lines=20
|
286 |
+
),
|
287 |
+
title="Content Question Generator",
|
288 |
+
description="""
|
289 |
+
Upload any size PDF document or provide a webpage URL to generate relevant questions.
|
290 |
+
|
291 |
+
Features:
|
292 |
+
- Supports large PDF files (100MB+)
|
293 |
+
- Works with any webpage URL
|
294 |
+
- Special handling for Wikipedia pages
|
295 |
+
- Generates 20 unique random questions
|
296 |
+
- Shows progress during processing
|
297 |
+
|
298 |
+
Note: Large files may take several minutes to process.
|
299 |
+
""",
|
300 |
+
allow_flagging="never"
|
301 |
+
)
|
302 |
+
|
303 |
+
return interface
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
interface = create_gradio_interface()
|
307 |
+
interface.queue().launch(share=True)
|