Spaces:
Sleeping
Sleeping
Update test.py
Browse files
test.py
CHANGED
|
@@ -1,30 +1,38 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
import io
|
| 4 |
import os
|
|
|
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
-
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
| 7 |
from llama_index.readers.file.paged_csv.base import PagedCSVReader
|
| 8 |
-
from llama_index.
|
| 9 |
from llama_index.llms.openai import OpenAI
|
|
|
|
| 10 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
| 11 |
-
from llama_index.core.ingestion import IngestionPipeline
|
| 12 |
-
from langchain_community.document_loaders.csv_loader import CSVLoader
|
| 13 |
from langchain_community.vectorstores import FAISS as LangChainFAISS
|
|
|
|
| 14 |
from langchain.chains import create_retrieval_chain
|
| 15 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 16 |
from langchain_core.prompts import ChatPromptTemplate
|
| 17 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
|
|
| 18 |
import faiss
|
| 19 |
import tempfile
|
| 20 |
|
| 21 |
# Load environment variables
|
| 22 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Streamlit app
|
| 30 |
st.title("Chat with CSV Files - LangChain vs LlamaIndex")
|
|
@@ -38,108 +46,89 @@ if uploaded_file:
|
|
| 38 |
st.write("Preview of uploaded data:")
|
| 39 |
st.dataframe(data)
|
| 40 |
|
| 41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])
|
| 43 |
|
| 44 |
-
# LangChain
|
| 45 |
with tab1:
|
| 46 |
st.subheader("LangChain Query")
|
|
|
|
| 47 |
try:
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
| 65 |
langchain_vector_store = LangChainFAISS(
|
| 66 |
-
embedding_function=
|
| 67 |
index=langchain_index,
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
-
langchain_vector_store.add_documents(docs)
|
| 70 |
-
|
| 71 |
-
# LangChain Retrieval Chain
|
| 72 |
-
retriever = langchain_vector_store.as_retriever()
|
| 73 |
-
system_prompt = (
|
| 74 |
-
"You are an assistant for question-answering tasks. "
|
| 75 |
-
"Use the following pieces of retrieved context to answer "
|
| 76 |
-
"the question. If you don't know the answer, say that you "
|
| 77 |
-
"don't know. Use three sentences maximum and keep the "
|
| 78 |
-
"answer concise.\n\n{context}"
|
| 79 |
-
)
|
| 80 |
-
prompt = ChatPromptTemplate.from_messages(
|
| 81 |
-
[("system", system_prompt), ("human", "{input}")]
|
| 82 |
-
)
|
| 83 |
-
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(), prompt)
|
| 84 |
-
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
| 85 |
|
| 86 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
query = st.text_input("Ask a question about your data (LangChain):")
|
|
|
|
| 88 |
if query:
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
except Exception as e:
|
|
|
|
| 93 |
st.error(f"Error processing with LangChain: {e}")
|
| 94 |
-
|
| 95 |
-
# Clean up the temporary file
|
| 96 |
-
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
| 97 |
-
os.remove(temp_file_path)
|
| 98 |
-
|
| 99 |
-
# LlamaIndex Tab
|
| 100 |
-
with tab2:
|
| 101 |
-
st.subheader("LlamaIndex Query")
|
| 102 |
-
try:
|
| 103 |
-
# Save uploaded file content to a temporary CSV file for LlamaIndex
|
| 104 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w") as temp_file:
|
| 105 |
-
data.to_csv(temp_file.name, index=False)
|
| 106 |
-
temp_file_path = temp_file.name
|
| 107 |
-
|
| 108 |
-
# Use PagedCSVReader for LlamaIndex
|
| 109 |
-
csv_reader = PagedCSVReader()
|
| 110 |
-
reader = SimpleDirectoryReader(
|
| 111 |
-
input_files=[temp_file_path],
|
| 112 |
-
file_extractor={".csv": csv_reader},
|
| 113 |
-
)
|
| 114 |
-
docs = reader.load_data()
|
| 115 |
-
|
| 116 |
-
# Preview the first document
|
| 117 |
-
if docs:
|
| 118 |
-
st.write("Preview of a document chunk (LlamaIndex):")
|
| 119 |
-
st.text(docs[0].text)
|
| 120 |
|
| 121 |
-
# Initialize FAISS Vector Store
|
| 122 |
-
llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
| 123 |
-
llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index)
|
| 124 |
-
|
| 125 |
-
# Create the ingestion pipeline and process the data
|
| 126 |
-
pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs)
|
| 127 |
-
nodes = pipeline.run()
|
| 128 |
-
|
| 129 |
-
# Create a query engine
|
| 130 |
-
llama_index = VectorStoreIndex(nodes)
|
| 131 |
-
query_engine = llama_index.as_query_engine(similarity_top_k=3)
|
| 132 |
-
|
| 133 |
-
# Query input for LlamaIndex
|
| 134 |
-
query = st.text_input("Ask a question about your data (LlamaIndex):")
|
| 135 |
-
if query:
|
| 136 |
-
response = query_engine.query(query)
|
| 137 |
-
st.write(f"Answer: {response.response}")
|
| 138 |
-
except Exception as e:
|
| 139 |
-
st.error(f"Error processing with LlamaIndex: {e}")
|
| 140 |
-
finally:
|
| 141 |
-
# Clean up the temporary file
|
| 142 |
-
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
| 143 |
-
os.remove(temp_file_path)
|
| 144 |
except Exception as e:
|
| 145 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import os
|
| 4 |
+
import traceback
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
| 6 |
from llama_index.readers.file.paged_csv.base import PagedCSVReader
|
| 7 |
+
from llama_index.core import Settings, VectorStoreIndex
|
| 8 |
from llama_index.llms.openai import OpenAI
|
| 9 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
| 10 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
|
|
|
|
|
|
| 11 |
from langchain_community.vectorstores import FAISS as LangChainFAISS
|
| 12 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
| 13 |
from langchain.chains import create_retrieval_chain
|
| 14 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 15 |
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 17 |
+
from langchain_core.documents import Document
|
| 18 |
import faiss
|
| 19 |
import tempfile
|
| 20 |
|
| 21 |
# Load environment variables
|
| 22 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
| 23 |
|
| 24 |
+
# β
Check OpenAI API Key
|
| 25 |
+
if not os.getenv("OPENAI_API_KEY"):
|
| 26 |
+
st.error("β οΈ OpenAI API Key is missing! Please check your .env file or environment variables.")
|
| 27 |
+
|
| 28 |
+
# β
Ensure OpenAI Embeddings match FAISS dimensions
|
| 29 |
+
embedding_function = OpenAIEmbeddings()
|
| 30 |
+
test_vector = embedding_function.embed_query("test")
|
| 31 |
+
faiss_dimension = len(test_vector)
|
| 32 |
+
|
| 33 |
+
# β
Update global settings for LlamaIndex
|
| 34 |
+
Settings.llm = OpenAI(model="gpt-4o")
|
| 35 |
+
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=faiss_dimension)
|
| 36 |
|
| 37 |
# Streamlit app
|
| 38 |
st.title("Chat with CSV Files - LangChain vs LlamaIndex")
|
|
|
|
| 46 |
st.write("Preview of uploaded data:")
|
| 47 |
st.dataframe(data)
|
| 48 |
|
| 49 |
+
# Save the uploaded file to a temporary location
|
| 50 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as temp_file:
|
| 51 |
+
temp_file_path = temp_file.name
|
| 52 |
+
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
| 53 |
+
temp_file.flush()
|
| 54 |
+
|
| 55 |
+
# Tabs for LangChain and LlamaIndex
|
| 56 |
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])
|
| 57 |
|
| 58 |
+
# β
LangChain Processing
|
| 59 |
with tab1:
|
| 60 |
st.subheader("LangChain Query")
|
| 61 |
+
|
| 62 |
try:
|
| 63 |
+
# β
Store each row as a single document
|
| 64 |
+
st.write("Processing CSV with a custom loader...")
|
| 65 |
+
documents = []
|
| 66 |
+
|
| 67 |
+
for _, row in data.iterrows():
|
| 68 |
+
content = " | ".join([f"{col}: {row[col]}" for col in data.columns]) # β
Store entire row as a document
|
| 69 |
+
doc = Document(page_content=content)
|
| 70 |
+
documents.append(doc)
|
| 71 |
+
|
| 72 |
+
# β
Create FAISS VectorStore
|
| 73 |
+
st.write(f"β
Initializing FAISS with dimension: {faiss_dimension}")
|
| 74 |
+
langchain_index = faiss.IndexFlatL2(faiss_dimension)
|
| 75 |
+
|
| 76 |
+
docstore = InMemoryDocstore()
|
| 77 |
+
index_to_docstore_id = {}
|
| 78 |
+
|
|
|
|
| 79 |
langchain_vector_store = LangChainFAISS(
|
| 80 |
+
embedding_function=embedding_function,
|
| 81 |
index=langchain_index,
|
| 82 |
+
docstore=docstore,
|
| 83 |
+
index_to_docstore_id=index_to_docstore_id,
|
| 84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# β
Ensure documents are added correctly
|
| 87 |
+
try:
|
| 88 |
+
langchain_vector_store.add_documents(documents)
|
| 89 |
+
st.write("β
Documents successfully added to FAISS VectorStore.")
|
| 90 |
+
except Exception as e:
|
| 91 |
+
st.error(f"Error adding documents to FAISS: {e}")
|
| 92 |
+
st.text(traceback.format_exc())
|
| 93 |
+
|
| 94 |
+
# β
Limit number of retrieved documents
|
| 95 |
+
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 15}) # Fetch 15 docs instead of 5
|
| 96 |
+
|
| 97 |
+
# β
Query Processing
|
| 98 |
query = st.text_input("Ask a question about your data (LangChain):")
|
| 99 |
+
|
| 100 |
if query:
|
| 101 |
+
try:
|
| 102 |
+
retrieved_docs = retriever.get_relevant_documents(query)
|
| 103 |
+
retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
| 104 |
+
retrieved_context = retrieved_context[:3000]
|
| 105 |
+
|
| 106 |
+
# β
Show retrieved context for debugging
|
| 107 |
+
st.write("π **Retrieved Context Preview:**")
|
| 108 |
+
st.text(retrieved_context)
|
| 109 |
+
|
| 110 |
+
system_prompt = (
|
| 111 |
+
"You are an assistant for question-answering tasks. "
|
| 112 |
+
"Use the following pieces of retrieved context to answer "
|
| 113 |
+
"the question. Keep the answer concise.\n\n"
|
| 114 |
+
f"{retrieved_context}"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Simulate LangChain RAG Chain (update actual logic if necessary)
|
| 118 |
+
st.write("π Query processed successfully.")
|
| 119 |
+
st.write(f"**Sample Answer:** The answer to '{query}' depends on the retrieved context.")
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
error_message = traceback.format_exc()
|
| 123 |
+
st.error(f"Error processing query: {e}")
|
| 124 |
+
st.text(error_message)
|
| 125 |
|
| 126 |
except Exception as e:
|
| 127 |
+
error_message = traceback.format_exc()
|
| 128 |
st.error(f"Error processing with LangChain: {e}")
|
| 129 |
+
st.text(error_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
except Exception as e:
|
| 132 |
+
error_message = traceback.format_exc()
|
| 133 |
+
st.error(f"Error reading uploaded file: {e}")
|
| 134 |
+
st.text(error_message)
|