Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -98,6 +98,20 @@ if uploaded_file:
|
|
| 98 |
# β
Limit number of retrieved documents
|
| 99 |
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
# β
Query Processing
|
| 102 |
query = st.text_input("Ask a question about your data (LangChain):")
|
| 103 |
|
|
@@ -106,6 +120,7 @@ if uploaded_file:
|
|
| 106 |
retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
|
| 107 |
retrieved_context = retrieved_context[:3000]
|
| 108 |
|
|
|
|
| 109 |
system_prompt = (
|
| 110 |
"You are an assistant for question-answering tasks. "
|
| 111 |
"Use the following pieces of retrieved context to answer "
|
|
@@ -118,9 +133,13 @@ if uploaded_file:
|
|
| 118 |
except Exception as e:
|
| 119 |
error_message = traceback.format_exc()
|
| 120 |
st.error(f"Error processing query: {e}")
|
| 121 |
-
st.text(error_message)
|
| 122 |
|
| 123 |
except Exception as e:
|
| 124 |
error_message = traceback.format_exc()
|
| 125 |
st.error(f"Error processing with LangChain: {e}")
|
| 126 |
-
st.text(error_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# β
Limit number of retrieved documents
|
| 99 |
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})
|
| 100 |
|
| 101 |
+
# β
Create LangChain Query Execution Pipeline
|
| 102 |
+
system_prompt = (
|
| 103 |
+
"You are an assistant for question-answering tasks. "
|
| 104 |
+
"Use the following pieces of retrieved context to answer "
|
| 105 |
+
"the question. Keep the answer concise.\n\n{context}"
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 109 |
+
[("system", system_prompt), ("human", "{input}")]
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
| 113 |
+
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
| 114 |
+
|
| 115 |
# β
Query Processing
|
| 116 |
query = st.text_input("Ask a question about your data (LangChain):")
|
| 117 |
|
|
|
|
| 120 |
retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
|
| 121 |
retrieved_context = retrieved_context[:3000]
|
| 122 |
|
| 123 |
+
# β
Ensure that we use the retrieved context
|
| 124 |
system_prompt = (
|
| 125 |
"You are an assistant for question-answering tasks. "
|
| 126 |
"Use the following pieces of retrieved context to answer "
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
error_message = traceback.format_exc()
|
| 135 |
st.error(f"Error processing query: {e}")
|
| 136 |
+
st.text(error_message)
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
error_message = traceback.format_exc()
|
| 140 |
st.error(f"Error processing with LangChain: {e}")
|
| 141 |
+
st.text(error_message)
|
| 142 |
+
except Exception as e:
|
| 143 |
+
error_message = traceback.format_exc()
|
| 144 |
+
st.error(f"Error reading uploaded file: {e}")
|
| 145 |
+
st.text(error_message) #
|