Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from llama_index.embeddings.openai import OpenAIEmbedding
|
|
| 9 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
| 10 |
from llama_index.core.ingestion import IngestionPipeline
|
| 11 |
from langchain_community.vectorstores import FAISS as LangChainFAISS
|
|
|
|
| 12 |
from langchain.chains import create_retrieval_chain
|
| 13 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 14 |
from langchain_core.prompts import ChatPromptTemplate
|
|
@@ -43,16 +44,17 @@ if uploaded_file:
|
|
| 43 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
| 44 |
temp_file.flush()
|
| 45 |
|
| 46 |
-
# Verify the temporary file
|
| 47 |
st.write("Temporary file path:", temp_file_path)
|
| 48 |
with open(temp_file_path, "r") as f:
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
# Tabs for LangChain and LlamaIndex
|
| 53 |
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
| 54 |
|
| 55 |
-
# LangChain Tab with
|
| 56 |
with tab1:
|
| 57 |
st.subheader("LangChain Query")
|
| 58 |
try:
|
|
@@ -68,11 +70,15 @@ if uploaded_file:
|
|
| 68 |
if documents:
|
| 69 |
st.text(documents[0]["page_content"])
|
| 70 |
|
| 71 |
-
# Create FAISS VectorStore
|
| 72 |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
|
|
|
|
|
|
| 73 |
langchain_vector_store = LangChainFAISS(
|
| 74 |
embedding_function=OpenAIEmbeddings(),
|
| 75 |
index=langchain_index,
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
langchain_vector_store.add_documents(documents)
|
| 78 |
|
|
|
|
| 9 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
| 10 |
from llama_index.core.ingestion import IngestionPipeline
|
| 11 |
from langchain_community.vectorstores import FAISS as LangChainFAISS
|
| 12 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
| 13 |
from langchain.chains import create_retrieval_chain
|
| 14 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 15 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
| 44 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
| 45 |
temp_file.flush()
|
| 46 |
|
| 47 |
+
# Debugging: Verify the temporary file (Display partially)
|
| 48 |
st.write("Temporary file path:", temp_file_path)
|
| 49 |
with open(temp_file_path, "r") as f:
|
| 50 |
+
content = f.read()
|
| 51 |
+
st.write("Partial file content (first 500 characters):")
|
| 52 |
+
st.text(content[:500])
|
| 53 |
|
| 54 |
# Tabs for LangChain and LlamaIndex
|
| 55 |
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
| 56 |
|
| 57 |
+
# LangChain Tab with Proper FAISS Initialization
|
| 58 |
with tab1:
|
| 59 |
st.subheader("LangChain Query")
|
| 60 |
try:
|
|
|
|
| 70 |
if documents:
|
| 71 |
st.text(documents[0]["page_content"])
|
| 72 |
|
| 73 |
+
# Create FAISS VectorStore with proper arguments
|
| 74 |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
| 75 |
+
docstore = InMemoryDocstore() # Create an in-memory docstore
|
| 76 |
+
index_to_docstore_id = {} # Mapping of index to document ID
|
| 77 |
langchain_vector_store = LangChainFAISS(
|
| 78 |
embedding_function=OpenAIEmbeddings(),
|
| 79 |
index=langchain_index,
|
| 80 |
+
docstore=docstore,
|
| 81 |
+
index_to_docstore_id=index_to_docstore_id,
|
| 82 |
)
|
| 83 |
langchain_vector_store.add_documents(documents)
|
| 84 |
|