Update app.py
Browse files
app.py
CHANGED
|
@@ -30,7 +30,6 @@ llm = None
|
|
| 30 |
# Model Selection
|
| 31 |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
| 32 |
|
| 33 |
-
|
| 34 |
# API Key Validation and LLM Initialization
|
| 35 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 36 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
@@ -51,9 +50,12 @@ elif model_choice == "GPT-4o":
|
|
| 51 |
# Initialize session state for data persistence
|
| 52 |
if "df" not in st.session_state:
|
| 53 |
st.session_state.df = None
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Dataset Input
|
| 56 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
|
|
|
| 57 |
if input_option == "Use Hugging Face Dataset":
|
| 58 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
| 59 |
if st.button("Load Dataset"):
|
|
@@ -61,16 +63,25 @@ if input_option == "Use Hugging Face Dataset":
|
|
| 61 |
with st.spinner("Loading dataset..."):
|
| 62 |
dataset = load_dataset(dataset_name, split="train")
|
| 63 |
st.session_state.df = pd.DataFrame(dataset)
|
|
|
|
| 64 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 65 |
-
st.dataframe(st.session_state.df.head())
|
| 66 |
except Exception as e:
|
| 67 |
st.error(f"Error: {e}")
|
|
|
|
| 68 |
elif input_option == "Upload CSV File":
|
| 69 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
| 70 |
if uploaded_file:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# SQL-RAG Analysis
|
| 76 |
if st.session_state.df is not None:
|
|
@@ -100,6 +111,7 @@ if st.session_state.df is not None:
|
|
| 100 |
"""Validate the SQL query syntax and structure before execution."""
|
| 101 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 102 |
|
|
|
|
| 103 |
sql_dev = Agent(
|
| 104 |
role="Senior Database Developer",
|
| 105 |
goal="Extract data using optimized SQL queries.",
|
|
@@ -117,11 +129,19 @@ if st.session_state.df is not None:
|
|
| 117 |
|
| 118 |
report_writer = Agent(
|
| 119 |
role="Technical Report Writer",
|
| 120 |
-
goal="
|
| 121 |
-
backstory="
|
| 122 |
llm=llm,
|
| 123 |
)
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
extract_data = Task(
|
| 126 |
description="Extract data based on the query: {query}.",
|
| 127 |
expected_output="Database results matching the query.",
|
|
@@ -130,56 +150,116 @@ if st.session_state.df is not None:
|
|
| 130 |
|
| 131 |
analyze_data = Task(
|
| 132 |
description="Analyze the extracted data for query: {query}.",
|
| 133 |
-
expected_output="Analysis
|
| 134 |
agent=data_analyst,
|
| 135 |
context=[extract_data],
|
| 136 |
)
|
| 137 |
|
| 138 |
write_report = Task(
|
| 139 |
-
description="
|
| 140 |
-
expected_output="Markdown report
|
| 141 |
agent=report_writer,
|
| 142 |
context=[analyze_data],
|
| 143 |
)
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
agents=[sql_dev, data_analyst, report_writer],
|
| 147 |
tasks=[extract_data, analyze_data, write_report],
|
| 148 |
process=Process.sequential,
|
| 149 |
verbose=True,
|
| 150 |
)
|
| 151 |
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
| 154 |
|
|
|
|
| 155 |
with tab1:
|
| 156 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
| 157 |
if st.button("Submit Query"):
|
| 158 |
with st.spinner("Processing query..."):
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
st.plotly_chart(fig)
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
with tab2:
|
| 170 |
st.subheader("π Comprehensive Data Visualizations")
|
| 171 |
-
|
| 172 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
| 173 |
st.plotly_chart(fig1)
|
| 174 |
|
| 175 |
-
fig2 = px.bar(
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
| 177 |
st.plotly_chart(fig2)
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
temp_dir.cleanup()
|
| 180 |
else:
|
| 181 |
st.info("Please load a dataset to proceed.")
|
| 182 |
|
|
|
|
|
|
|
| 183 |
with st.sidebar:
|
| 184 |
st.header("π Reference:")
|
| 185 |
-
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
|
|
|
|
|
|
|
|
| 30 |
# Model Selection
|
| 31 |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
| 32 |
|
|
|
|
| 33 |
# API Key Validation and LLM Initialization
|
| 34 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 35 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 50 |
# Initialize session state for data persistence
|
| 51 |
if "df" not in st.session_state:
|
| 52 |
st.session_state.df = None
|
| 53 |
+
if "show_preview" not in st.session_state:
|
| 54 |
+
st.session_state.show_preview = False
|
| 55 |
|
| 56 |
# Dataset Input
|
| 57 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
| 58 |
+
|
| 59 |
if input_option == "Use Hugging Face Dataset":
|
| 60 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
| 61 |
if st.button("Load Dataset"):
|
|
|
|
| 63 |
with st.spinner("Loading dataset..."):
|
| 64 |
dataset = load_dataset(dataset_name, split="train")
|
| 65 |
st.session_state.df = pd.DataFrame(dataset)
|
| 66 |
+
st.session_state.show_preview = True # Show preview after loading
|
| 67 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
|
|
|
| 68 |
except Exception as e:
|
| 69 |
st.error(f"Error: {e}")
|
| 70 |
+
|
| 71 |
elif input_option == "Upload CSV File":
|
| 72 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
| 73 |
if uploaded_file:
|
| 74 |
+
try:
|
| 75 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
| 76 |
+
st.session_state.show_preview = True # Show preview after loading
|
| 77 |
+
st.success("File uploaded successfully!")
|
| 78 |
+
except Exception as e:
|
| 79 |
+
st.error(f"Error loading file: {e}")
|
| 80 |
+
|
| 81 |
+
# Show Dataset Preview Only After Loading
|
| 82 |
+
if st.session_state.df is not None and st.session_state.show_preview:
|
| 83 |
+
st.subheader("π Dataset Preview")
|
| 84 |
+
st.dataframe(st.session_state.df.head())
|
| 85 |
|
| 86 |
# SQL-RAG Analysis
|
| 87 |
if st.session_state.df is not None:
|
|
|
|
| 111 |
"""Validate the SQL query syntax and structure before execution."""
|
| 112 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 113 |
|
| 114 |
+
# Agents for SQL data extraction and analysis
|
| 115 |
sql_dev = Agent(
|
| 116 |
role="Senior Database Developer",
|
| 117 |
goal="Extract data using optimized SQL queries.",
|
|
|
|
| 129 |
|
| 130 |
report_writer = Agent(
|
| 131 |
role="Technical Report Writer",
|
| 132 |
+
goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
|
| 133 |
+
backstory="Specializes in detailed analytical reports without conclusions.",
|
| 134 |
llm=llm,
|
| 135 |
)
|
| 136 |
|
| 137 |
+
conclusion_writer = Agent(
|
| 138 |
+
role="Conclusion Specialist",
|
| 139 |
+
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
|
| 140 |
+
backstory="An expert in crafting impactful and clear conclusions.",
|
| 141 |
+
llm=llm,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Define tasks for report and conclusion
|
| 145 |
extract_data = Task(
|
| 146 |
description="Extract data based on the query: {query}.",
|
| 147 |
expected_output="Database results matching the query.",
|
|
|
|
| 150 |
|
| 151 |
analyze_data = Task(
|
| 152 |
description="Analyze the extracted data for query: {query}.",
|
| 153 |
+
expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
|
| 154 |
agent=data_analyst,
|
| 155 |
context=[extract_data],
|
| 156 |
)
|
| 157 |
|
| 158 |
write_report = Task(
|
| 159 |
+
description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
|
| 160 |
+
expected_output="Markdown-formatted report excluding Conclusion.",
|
| 161 |
agent=report_writer,
|
| 162 |
context=[analyze_data],
|
| 163 |
)
|
| 164 |
|
| 165 |
+
write_conclusion = Task(
|
| 166 |
+
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
|
| 167 |
+
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
|
| 168 |
+
expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
|
| 169 |
+
agent=conclusion_writer,
|
| 170 |
+
context=[analyze_data],
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# Separate Crews for report and conclusion
|
| 176 |
+
crew_report = Crew(
|
| 177 |
agents=[sql_dev, data_analyst, report_writer],
|
| 178 |
tasks=[extract_data, analyze_data, write_report],
|
| 179 |
process=Process.sequential,
|
| 180 |
verbose=True,
|
| 181 |
)
|
| 182 |
|
| 183 |
+
crew_conclusion = Crew(
|
| 184 |
+
agents=[data_analyst, conclusion_writer],
|
| 185 |
+
tasks=[write_conclusion],
|
| 186 |
+
process=Process.sequential,
|
| 187 |
+
verbose=True,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Tabs for Query Results and Visualizations
|
| 191 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
| 192 |
|
| 193 |
+
# Query Insights + Visualization
|
| 194 |
with tab1:
|
| 195 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
| 196 |
if st.button("Submit Query"):
|
| 197 |
with st.spinner("Processing query..."):
|
| 198 |
+
# Step 1: Generate the analysis report
|
| 199 |
+
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
|
| 200 |
+
report_result = crew_report.kickoff(inputs=report_inputs)
|
| 201 |
+
|
| 202 |
+
# Step 2: Generate only the concise conclusion
|
| 203 |
+
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
| 204 |
+
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
| 205 |
+
|
| 206 |
+
# Step 3: Display the report
|
| 207 |
+
#st.markdown("### Analysis Report:")
|
| 208 |
+
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
| 209 |
+
|
| 210 |
+
# Step 4: Generate Visualizations
|
| 211 |
+
visualizations = []
|
| 212 |
+
|
| 213 |
+
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
| 214 |
+
title="Salary Distribution by Job Title")
|
| 215 |
+
visualizations.append(fig_salary)
|
| 216 |
+
|
| 217 |
+
fig_experience = px.bar(
|
| 218 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
| 219 |
+
x="experience_level", y="salary_in_usd",
|
| 220 |
+
title="Average Salary by Experience Level"
|
| 221 |
+
)
|
| 222 |
+
visualizations.append(fig_experience)
|
| 223 |
|
| 224 |
+
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
| 225 |
+
title="Salary Distribution by Employment Type")
|
| 226 |
+
visualizations.append(fig_employment)
|
|
|
|
| 227 |
|
| 228 |
+
# Step 5: Insert Visual Insights
|
| 229 |
+
st.markdown("### Visual Insights")
|
| 230 |
+
for fig in visualizations:
|
| 231 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 232 |
+
|
| 233 |
+
# Step 6: Display Concise Conclusion
|
| 234 |
+
#st.markdown("#### Conclusion")
|
| 235 |
+
st.markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
| 236 |
+
|
| 237 |
+
# Full Data Visualization Tab
|
| 238 |
with tab2:
|
| 239 |
st.subheader("π Comprehensive Data Visualizations")
|
| 240 |
+
|
| 241 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
| 242 |
st.plotly_chart(fig1)
|
| 243 |
|
| 244 |
+
fig2 = px.bar(
|
| 245 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
| 246 |
+
x="experience_level", y="salary_in_usd",
|
| 247 |
+
title="Average Salary by Experience Level"
|
| 248 |
+
)
|
| 249 |
st.plotly_chart(fig2)
|
| 250 |
|
| 251 |
+
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
| 252 |
+
title="Salary Distribution by Employment Type")
|
| 253 |
+
st.plotly_chart(fig3)
|
| 254 |
+
|
| 255 |
temp_dir.cleanup()
|
| 256 |
else:
|
| 257 |
st.info("Please load a dataset to proceed.")
|
| 258 |
|
| 259 |
+
|
| 260 |
+
# Sidebar Reference
|
| 261 |
with st.sidebar:
|
| 262 |
st.header("π Reference:")
|
| 263 |
+
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
| 264 |
+
|
| 265 |
+
|