Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,197 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageFilter
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from torchvision import transforms
|
8 |
+
from transformers import AutoModelForImageSegmentation, DepthProImageProcessorFast, DepthProForDepthEstimation
|
9 |
+
import requests
|
10 |
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
12 |
|
13 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
|
14 |
+
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
15 |
+
birefnet.to('cuda')
|
16 |
+
birefnet.eval()
|
17 |
+
birefnet.half()
|
18 |
+
|
19 |
+
def extract_object(image, t1, t2):
|
20 |
+
# Data settings
|
21 |
+
image_size = (1024, 1024)
|
22 |
+
transform_image = transforms.Compose([
|
23 |
+
transforms.Resize(image_size),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
26 |
+
])
|
27 |
+
|
28 |
+
# image = Image.open(imagepath)
|
29 |
+
image1 = image.copy()
|
30 |
+
input_images = transform_image(image1).unsqueeze(0).to('cuda').half()
|
31 |
+
|
32 |
+
# Prediction
|
33 |
+
with torch.no_grad():
|
34 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
35 |
+
pred = preds[0].squeeze()
|
36 |
+
pred_pil = transforms.ToPILImage()(pred)
|
37 |
+
mask = pred_pil.resize(image1.size)
|
38 |
+
image1.putalpha(mask)
|
39 |
+
|
40 |
+
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
|
41 |
+
|
42 |
+
mask = np.array(result[1].convert("L"))
|
43 |
+
_, maskBinary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
44 |
+
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
|
45 |
+
|
46 |
+
maskInv = cv2.bitwise_not(maskBinary)
|
47 |
+
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
|
48 |
+
|
49 |
+
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
|
50 |
+
background = cv2.bitwise_and(blurredBg, maskInv3)
|
51 |
+
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
|
52 |
+
|
53 |
+
# plt.figure(figsize=(15, 5))
|
54 |
+
# return image1, mask
|
55 |
+
|
56 |
+
# def depth_estimation():
|
57 |
+
imageProcessor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
|
58 |
+
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
|
59 |
+
|
60 |
+
inputs = imageProcessor(images=imageResized, return_tensors="pt").to(device)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = model(**inputs)
|
64 |
+
|
65 |
+
post_processed_output = imageProcessor.post_process_depth_estimation(
|
66 |
+
outputs, target_sizes=[(imageResized.height, imageResized.width)],
|
67 |
+
)
|
68 |
+
|
69 |
+
field_of_view = post_processed_output[0]["field_of_view"]
|
70 |
+
focal_length = post_processed_output[0]["focal_length"]
|
71 |
+
depth = post_processed_output[0]["predicted_depth"]
|
72 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min())
|
73 |
+
depth = depth * 255.
|
74 |
+
depth = depth.detach().cpu().numpy()
|
75 |
+
# print(depth)
|
76 |
+
depthImg = Image.fromarray(depth.astype("uint8"))
|
77 |
+
|
78 |
+
# threshold1 = 255 / 20 # ~85
|
79 |
+
# threshold2 = 2 * 255 / 3 # ~170
|
80 |
+
|
81 |
+
threshold1 = (t1/10) * 255
|
82 |
+
threshold2 = (t2/10) * 255
|
83 |
+
|
84 |
+
# Precompute blurred versions for each region
|
85 |
+
img_foreground = img.copy() # No blur for foreground
|
86 |
+
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
|
87 |
+
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
|
88 |
+
|
89 |
+
# Create masks for each region (as float arrays for proper blending)
|
90 |
+
mask_fg = (depth < threshold1).astype(np.float32)
|
91 |
+
mask_mg = ((depth >= threshold1) & (depth < threshold2)).astype(np.float32)
|
92 |
+
mask_bg = (depth >= threshold2).astype(np.float32)
|
93 |
+
|
94 |
+
# Expand masks to 3 channels (H, W, 3)
|
95 |
+
mask_fg = np.stack([mask_fg]*3, axis=-1)
|
96 |
+
mask_mg = np.stack([mask_mg]*3, axis=-1)
|
97 |
+
mask_bg = np.stack([mask_bg]*3, axis=-1)
|
98 |
+
|
99 |
+
# Combine the images using the masks in a vectorized manner.
|
100 |
+
final_img = (img_foreground * mask_fg +
|
101 |
+
img_middleground * mask_mg +
|
102 |
+
img_background * mask_bg).astype(np.uint8)
|
103 |
+
|
104 |
+
# Convert the result back to RGB for display with matplotlib.
|
105 |
+
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
|
106 |
+
|
107 |
+
return image1, final_img
|
108 |
+
|
109 |
+
# Visualization
|
110 |
+
# plt.axis("off")
|
111 |
+
# subplots for 3 images: original, segmented, mask
|
112 |
+
|
113 |
+
# plt.figure(figsize=(15, 5))
|
114 |
+
|
115 |
+
# image = Image.open('/content/drive/MyDrive/eee515-hw3/hw3-q24.jpg')
|
116 |
+
# #resize the image to 512x512
|
117 |
+
# imageResized = image.resize((512, 512))
|
118 |
+
|
119 |
+
# result = extract_object(birefnet, imageResized)
|
120 |
+
# plt.subplot(1, 3, 1)
|
121 |
+
# plt.title("Original Resized Image")
|
122 |
+
# plt.imshow(imageResized)
|
123 |
+
|
124 |
+
# plt.subplot(1, 3, 2)
|
125 |
+
# plt.title("Segmented Image")
|
126 |
+
# plt.imshow(result[0])
|
127 |
+
|
128 |
+
# plt.subplot(1, 3, 3)
|
129 |
+
# plt.title("Mask")
|
130 |
+
# plt.imshow(result[1], cmap="gray")
|
131 |
+
# plt.show()
|
132 |
+
|
133 |
+
# Create a Gradio interface
|
134 |
+
|
135 |
+
|
136 |
+
def build_interface(image1, image2):
|
137 |
+
"""Build UI for gradio app
|
138 |
+
"""
|
139 |
+
title = "Bokeh and Lens Blur"
|
140 |
+
with gr.Blocks(theme=gr.themes.Soft(), title=title, fill_width=True) as interface:
|
141 |
+
with gr.Row():
|
142 |
+
# with gr.Column(scale=3):
|
143 |
+
# with gr.Group():
|
144 |
+
# input_text_box = gr.Textbox(
|
145 |
+
# value=None,
|
146 |
+
# label="Prompt",
|
147 |
+
# lines=2,
|
148 |
+
# )
|
149 |
+
# # gr.Markdown("### Set the values for Middleground and Background")
|
150 |
+
# # fg = gr.Slider(minimum=0, maximum=99, step=1, value=33, label="Middleground")
|
151 |
+
# # mg = gr.Slider(minimum=0, maximum=99, step=1, value=66, label="Background")
|
152 |
+
# with gr.Row():
|
153 |
+
# submit_button = gr.Button("Submit", variant="primary")
|
154 |
+
with gr.Column(scale=3):
|
155 |
+
model3d = gr.Model3D(
|
156 |
+
label="Output", height="45em", interactive=False
|
157 |
+
)
|
158 |
+
|
159 |
+
with gr.Column(scale=3):
|
160 |
+
model3d = gr.Model3D(
|
161 |
+
label="Output", height="45em", interactive=False
|
162 |
+
)
|
163 |
+
|
164 |
+
submit_button.click(
|
165 |
+
handle_text_prompt,
|
166 |
+
inputs=[
|
167 |
+
input_text_box,
|
168 |
+
variance
|
169 |
+
],
|
170 |
+
outputs=[
|
171 |
+
model3d
|
172 |
+
]
|
173 |
+
)
|
174 |
+
|
175 |
+
return interface
|
176 |
+
|
177 |
+
# demo = gr.Interface(sepia, gr.Image(), "image")
|
178 |
+
|
179 |
+
title = "Gaussian Blur Background App"
|
180 |
+
description = (
|
181 |
+
"Upload an image to apply a realistic background blur effect. "
|
182 |
+
"The app segments the foreground using RMBG-2.0 and then applies a Gaussian "
|
183 |
+
"blur (σ=15) to the background, simulating a video conferencing blur effect."
|
184 |
+
)
|
185 |
+
|
186 |
+
iface = gr.Interface(
|
187 |
+
fn=apply_blur_effect,
|
188 |
+
inputs=[gr.Image(type="pil", label="Input Image"), gr.Slider(minimum=0, maximum=40, step=1, value=33, label="Middleground"), gr.Slider(minimum=40, maximum=99, step=1, value=66, label="Background")],
|
189 |
+
outputs=[gr.Image(type="pil", label="Bokeh Image", gr.Image(type="pil", label="Lens Blur Image"))],
|
190 |
+
title=title,
|
191 |
+
description=description,
|
192 |
+
allow_flagging="never"
|
193 |
+
)
|
194 |
+
|
195 |
+
demo = build_interface()
|
196 |
+
demo.queue(default_concurrency_limit=1)
|
197 |
+
demo.launch()
|