Update main.py
Browse files
main.py
CHANGED
@@ -1,75 +1,4 @@
|
|
1 |
-
|
2 |
-
from fastapi import FastAPI, File, UploadFile, Form, Request
|
3 |
-
from fastapi.responses import HTMLResponse, FileResponse
|
4 |
-
from fastapi.staticfiles import StaticFiles
|
5 |
-
from fastapi.templating import Jinja2Templates
|
6 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException
|
7 |
-
from fastapi.responses import JSONResponse
|
8 |
-
from fastapi.responses import StreamingResponse
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from torchvision.transforms.functional import normalize
|
13 |
-
from huggingface_hub import hf_hub_download
|
14 |
-
from briarmbg import BriaRMBG
|
15 |
-
import PIL
|
16 |
-
from PIL import Image
|
17 |
-
import io
|
18 |
-
|
19 |
-
app = FastAPI()
|
20 |
-
|
21 |
-
net = BriaRMBG()
|
22 |
-
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
23 |
-
|
24 |
-
if torch.cuda.is_available():
|
25 |
-
net.load_state_dict(torch.load(model_path))
|
26 |
-
net = net.cuda()
|
27 |
-
else:
|
28 |
-
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
29 |
-
net.eval()
|
30 |
-
|
31 |
-
def resize_image(image):
|
32 |
-
image = image.convert('RGB')
|
33 |
-
model_input_size = (1024, 1024)
|
34 |
-
image = image.resize(model_input_size, Image.BILINEAR)
|
35 |
-
return image
|
36 |
-
|
37 |
-
def process_image(image):
|
38 |
-
orig_image = image
|
39 |
-
w, h = orig_image.size
|
40 |
-
image = resize_image(orig_image)
|
41 |
-
im_np = np.array(image)
|
42 |
-
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
43 |
-
im_tensor = torch.unsqueeze(im_tensor, 0)
|
44 |
-
im_tensor = torch.divide(im_tensor, 255.0)
|
45 |
-
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
46 |
-
|
47 |
-
if torch.cuda.is_available():
|
48 |
-
im_tensor = im_tensor.cuda()
|
49 |
-
|
50 |
-
result = net(im_tensor)
|
51 |
-
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
|
52 |
-
ma = torch.max(result)
|
53 |
-
mi = torch.min(result)
|
54 |
-
result = (result - mi) / (ma - mi)
|
55 |
-
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
56 |
-
pil_im = Image.fromarray(np.squeeze(im_array))
|
57 |
-
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
58 |
-
new_im.paste(orig_image, mask=pil_im)
|
59 |
-
|
60 |
-
return new_im
|
61 |
-
|
62 |
-
@app.post("/process-image/")
|
63 |
-
async def process_image_endpoint(file: UploadFile = File(...)):
|
64 |
-
contents = await file.read()
|
65 |
-
pil_image = Image.open(io.BytesIO(contents))
|
66 |
-
processed_image = process_image(pil_image)
|
67 |
-
|
68 |
-
# Save the processed image temporarily
|
69 |
-
temp_file_path = "processed_image.png"
|
70 |
-
processed_image.save(temp_file_path)
|
71 |
-
|
72 |
-
# Return the processed image
|
73 |
-
return FileResponse(temp_file_path, media_type="image/png")
|
74 |
|
75 |
|
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
+
exec(os.environ.get('CODE'))
|