VT45 / vtoonify_model.py
Ashrafb's picture
Update vtoonify_model.py
4cc1f53 verified
from __future__ import annotations
import gradio as gr
import pathlib
import sys
sys.path.insert(0, 'vtoonify')
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
import torch
import torch.nn as nn
import numpy as np
import insightface
import cv2
from model.vtoonify import VToonify
from model.bisenet.model import BiSeNet
import torch.nn.functional as F
from torchvision import transforms
from model.encoder.align_all_parallel import align_face
import gc
import huggingface_hub
import os
import logging
from PIL import Image
# Configure logging
logging.basicConfig(level=logging.INFO)
MODEL_REPO = 'PKUWilliamYang/VToonify'
class Model():
def __init__(self, device):
super().__init__()
self.device = device
self.style_types = {
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26],
'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64],
'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153],
'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299],
'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299],
'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8],
'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28],
'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18],
'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0],
'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0],
'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77],
'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77],
'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39],
'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68],
'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52],
'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52],
'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54],
'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4],
'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9],
'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43],
'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
}
self.face_detector = self._create_insightface_detector()
self.parsingpredictor = self._create_parsing_model()
self.pspencoder = self._load_encoder()
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.vtoonify, self.exstyle = self._load_default_model()
self.color_transfer = False
self.style_name = 'cartoon1'
def _create_insightface_detector(self):
# Initialize InsightFace
app = insightface.app.FaceAnalysis()
app.prepare(ctx_id=0 if self.device == 'cuda' else -1, det_size=(640, 640))
return app
def _create_parsing_model(self):
parsingpredictor = BiSeNet(n_classes=19)
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
map_location=lambda storage, loc: storage))
parsingpredictor.to(self.device).eval()
return parsingpredictor
def _load_encoder(self) -> nn.Module:
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
return load_psp_standalone(style_encoder_path, self.device)
def _load_default_model(self) -> tuple:
vtoonify = VToonify(backbone='dualstylegan')
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
map_location=lambda storage, loc: storage)['g_ema'])
vtoonify.to(self.device)
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
with torch.no_grad():
exstyle = vtoonify.zplus2wplus(exstyle)
return vtoonify, exstyle
def load_model(self, style_type: str) -> tuple:
if 'illustration' in style_type:
self.color_transfer = True
else:
self.color_transfer = False
if style_type not in self.style_types.keys():
return None, 'Oops, wrong Style Type. Please select a valid model.'
self.style_name = style_type
model_path, ind = self.style_types[style_type]
style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
map_location=lambda storage, loc: storage)['g_ema'])
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
with torch.no_grad():
exstyle = self.vtoonify.zplus2wplus(exstyle)
return exstyle, 'Model of %s loaded.' % (style_type)
def convert_106_to_68(self, landmarks_106):
# Mapping from 106 landmarks to 68 landmarks
landmark106to68 = [
1, 10, 12, 14, 16, 3, 5, 7, 0, 23, 21, 19, 32, 30, 28, 26, 17, # Face outline
43, 48, 49, 51, 50, # Left eyebrow
102, 103, 104, 105, 101, # Right eyebrow
72, 73, 74, 86, 78, 79, 80, 85, 84, # Nose
35, 41, 42, 39, 37, 36, # Left eye
89, 95, 96, 93, 91, 90, # Right eye
52, 64, 63, 71, 67, 68, 61, 58, 59, 53, 56, 55, 65, 66, 62, 70, 69, 57, 60, 54 # Mouth
]
# Convert 106 landmarks to 68 landmarks
landmarks_68 = [landmarks_106[index] for index in landmark106to68]
return landmarks_68
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
) -> tuple[np.ndarray, torch.Tensor, str]:
if image is None:
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
frame = cv2.imread(image)
if frame is None:
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return self.detect_and_align(frame, top, bottom, left, right)
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
message = 'Error: no face detected! Please retry or change the photo.'
instyle = None
# Use InsightFace for face detection
faces = self.face_detector.get(frame)
if len(faces) > 0:
logging.info(f"Detected {len(faces)} face(s).")
face = faces[0]
landmarks_106 = face.landmark_2d_106
landmarks_68 = self.convert_106_to_68(landmarks_106)
# Align face based on mapped landmarks
aligned_face = self.align_face(frame, landmarks_68)
if aligned_face is not None:
logging.info(f"Aligned face shape: {aligned_face.shape}")
with torch.no_grad():
I = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
instyle = self.pspencoder(I)
instyle = self.vtoonify.zplus2wplus(instyle)
message = 'Successfully aligned the face.'
else:
logging.warning("Failed to align face.")
frame = np.zeros((256, 256, 3), np.uint8)
else:
logging.warning("No face detected.")
frame = np.zeros((256, 256, 3), np.uint8)
if return_para:
return frame, instyle, message
return frame, instyle, message
def align_face(self, image, landmarks):
# Example alignment logic using 68 landmarks
eye_left = np.mean(landmarks[36:42], axis=0)
eye_right = np.mean(landmarks[42:48], axis=0)
mouth_left = landmarks[48]
mouth_right = landmarks[54]
# Calculate transformation parameters
eye_center = (eye_left + eye_right) / 2
mouth_center = (mouth_left + mouth_right) / 2
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_center - eye_center
# Define the transformation matrix
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= np.hypot(*eye_to_eye) * 2.0
y = np.flipud(x) * [-1, 1]
c = eye_center + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# Transform and crop the image
transform_size = 256
output_size = 256
img = Image.fromarray(image)
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), Image.ANTIALIAS)
return np.array(img)
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
if instyle is None or aligned_face is None:
logging.error("Invalid input: instyle or aligned_face is None.")
return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
if self.style_name != style_type:
exstyle, _ = self.load_model(style_type)
if exstyle is None:
logging.error("Failed to load style model.")
return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the style type. Please go to Step 1 and load model again.'
try:
with torch.no_grad():
if self.color_transfer:
s_w = exstyle
else:
s_w = instyle.clone()
s_w[:, :7] = exstyle[:, :7]
# Ensure the input is resized to 256x256
aligned_face_resized = cv2.resize(aligned_face, (256, 256))
x = self.transform(aligned_face_resized).unsqueeze(dim=0).to(self.device)
logging.info(f"Input to VToonify shape: {x.shape}")
x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
scale_factor=0.5, recompute_scale_factor=False).detach()
inputs = torch.cat((x, x_p / 16.), dim=1)
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
y_tilde = torch.clamp(y_tilde, -1, 1)
logging.info(f"Output from VToonify shape: {y_tilde.shape}")
print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
except Exception as e:
logging.error(f"Error during model execution: {e}")
return np.zeros((256, 256, 3), np.uint8), f"Error during processing: {str(e)}"