|
from __future__ import annotations |
|
import gradio as gr |
|
import pathlib |
|
import sys |
|
sys.path.insert(0, 'vtoonify') |
|
|
|
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2 |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import insightface |
|
import cv2 |
|
from model.vtoonify import VToonify |
|
from model.bisenet.model import BiSeNet |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from model.encoder.align_all_parallel import align_face |
|
import gc |
|
import huggingface_hub |
|
import os |
|
import logging |
|
from PIL import Image |
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
MODEL_REPO = 'PKUWilliamYang/VToonify' |
|
|
|
class Model(): |
|
def __init__(self, device): |
|
super().__init__() |
|
|
|
self.device = device |
|
self.style_types = { |
|
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26], |
|
'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26], |
|
'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64], |
|
'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153], |
|
'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299], |
|
'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299], |
|
'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8], |
|
'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28], |
|
'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18], |
|
'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0], |
|
'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0], |
|
'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77], |
|
'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77], |
|
'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39], |
|
'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68], |
|
'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52], |
|
'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52], |
|
'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54], |
|
'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4], |
|
'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9], |
|
'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43], |
|
'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86], |
|
} |
|
|
|
self.face_detector = self._create_insightface_detector() |
|
self.parsingpredictor = self._create_parsing_model() |
|
self.pspencoder = self._load_encoder() |
|
self.transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
self.vtoonify, self.exstyle = self._load_default_model() |
|
self.color_transfer = False |
|
self.style_name = 'cartoon1' |
|
|
|
def _create_insightface_detector(self): |
|
|
|
app = insightface.app.FaceAnalysis() |
|
app.prepare(ctx_id=0 if self.device == 'cuda' else -1, det_size=(640, 640)) |
|
return app |
|
|
|
def _create_parsing_model(self): |
|
parsingpredictor = BiSeNet(n_classes=19) |
|
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'), |
|
map_location=lambda storage, loc: storage)) |
|
parsingpredictor.to(self.device).eval() |
|
return parsingpredictor |
|
|
|
def _load_encoder(self) -> nn.Module: |
|
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt') |
|
return load_psp_standalone(style_encoder_path, self.device) |
|
|
|
def _load_default_model(self) -> tuple: |
|
vtoonify = VToonify(backbone='dualstylegan') |
|
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, |
|
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'), |
|
map_location=lambda storage, loc: storage)['g_ema']) |
|
vtoonify.to(self.device) |
|
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item() |
|
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device) |
|
with torch.no_grad(): |
|
exstyle = vtoonify.zplus2wplus(exstyle) |
|
return vtoonify, exstyle |
|
|
|
def load_model(self, style_type: str) -> tuple: |
|
if 'illustration' in style_type: |
|
self.color_transfer = True |
|
else: |
|
self.color_transfer = False |
|
if style_type not in self.style_types.keys(): |
|
return None, 'Oops, wrong Style Type. Please select a valid model.' |
|
self.style_name = style_type |
|
model_path, ind = self.style_types[style_type] |
|
style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy') |
|
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path), |
|
map_location=lambda storage, loc: storage)['g_ema']) |
|
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item() |
|
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device) |
|
with torch.no_grad(): |
|
exstyle = self.vtoonify.zplus2wplus(exstyle) |
|
return exstyle, 'Model of %s loaded.' % (style_type) |
|
|
|
def convert_106_to_68(self, landmarks_106): |
|
|
|
landmark106to68 = [ |
|
1, 10, 12, 14, 16, 3, 5, 7, 0, 23, 21, 19, 32, 30, 28, 26, 17, |
|
43, 48, 49, 51, 50, |
|
102, 103, 104, 105, 101, |
|
72, 73, 74, 86, 78, 79, 80, 85, 84, |
|
35, 41, 42, 39, 37, 36, |
|
89, 95, 96, 93, 91, 90, |
|
52, 64, 63, 71, 67, 68, 61, 58, 59, 53, 56, 55, 65, 66, 62, 70, 69, 57, 60, 54 |
|
] |
|
|
|
|
|
landmarks_68 = [landmarks_106[index] for index in landmark106to68] |
|
|
|
return landmarks_68 |
|
|
|
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int |
|
) -> tuple[np.ndarray, torch.Tensor, str]: |
|
if image is None: |
|
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.' |
|
frame = cv2.imread(image) |
|
if frame is None: |
|
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.' |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
return self.detect_and_align(frame, top, bottom, left, right) |
|
def detect_and_align(self, frame, top, bottom, left, right, return_para=False): |
|
message = 'Error: no face detected! Please retry or change the photo.' |
|
instyle = None |
|
|
|
|
|
faces = self.face_detector.get(frame) |
|
if len(faces) > 0: |
|
logging.info(f"Detected {len(faces)} face(s).") |
|
face = faces[0] |
|
landmarks_106 = face.landmark_2d_106 |
|
landmarks_68 = self.convert_106_to_68(landmarks_106) |
|
|
|
|
|
aligned_face = self.align_face(frame, landmarks_68) |
|
if aligned_face is not None: |
|
logging.info(f"Aligned face shape: {aligned_face.shape}") |
|
with torch.no_grad(): |
|
I = self.transform(aligned_face).unsqueeze(dim=0).to(self.device) |
|
instyle = self.pspencoder(I) |
|
instyle = self.vtoonify.zplus2wplus(instyle) |
|
message = 'Successfully aligned the face.' |
|
else: |
|
logging.warning("Failed to align face.") |
|
frame = np.zeros((256, 256, 3), np.uint8) |
|
else: |
|
logging.warning("No face detected.") |
|
frame = np.zeros((256, 256, 3), np.uint8) |
|
|
|
if return_para: |
|
return frame, instyle, message |
|
return frame, instyle, message |
|
|
|
def align_face(self, image, landmarks): |
|
|
|
eye_left = np.mean(landmarks[36:42], axis=0) |
|
eye_right = np.mean(landmarks[42:48], axis=0) |
|
mouth_left = landmarks[48] |
|
mouth_right = landmarks[54] |
|
|
|
|
|
eye_center = (eye_left + eye_right) / 2 |
|
mouth_center = (mouth_left + mouth_right) / 2 |
|
eye_to_eye = eye_right - eye_left |
|
eye_to_mouth = mouth_center - eye_center |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= np.hypot(*eye_to_eye) * 2.0 |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_center + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
transform_size = 256 |
|
output_size = 256 |
|
img = Image.fromarray(image) |
|
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), Image.ANTIALIAS) |
|
|
|
return np.array(img) |
|
|
|
|
|
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple: |
|
if instyle is None or aligned_face is None: |
|
logging.error("Invalid input: instyle or aligned_face is None.") |
|
return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.' |
|
|
|
if self.style_name != style_type: |
|
exstyle, _ = self.load_model(style_type) |
|
if exstyle is None: |
|
logging.error("Failed to load style model.") |
|
return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the style type. Please go to Step 1 and load model again.' |
|
|
|
try: |
|
with torch.no_grad(): |
|
if self.color_transfer: |
|
s_w = exstyle |
|
else: |
|
s_w = instyle.clone() |
|
s_w[:, :7] = exstyle[:, :7] |
|
|
|
|
|
aligned_face_resized = cv2.resize(aligned_face, (256, 256)) |
|
x = self.transform(aligned_face_resized).unsqueeze(dim=0).to(self.device) |
|
logging.info(f"Input to VToonify shape: {x.shape}") |
|
x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], |
|
scale_factor=0.5, recompute_scale_factor=False).detach() |
|
inputs = torch.cat((x, x_p / 16.), dim=1) |
|
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree) |
|
y_tilde = torch.clamp(y_tilde, -1, 1) |
|
logging.info(f"Output from VToonify shape: {y_tilde.shape}") |
|
print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type)) |
|
|
|
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name) |
|
|
|
except Exception as e: |
|
logging.error(f"Error during model execution: {e}") |
|
return np.zeros((256, 256, 3), np.uint8), f"Error during processing: {str(e)}" |
|
|