Ashrafb commited on
Commit
377d355
·
verified ·
1 Parent(s): 671edb4

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +1 -128
main.py CHANGED
@@ -1,131 +1,4 @@
1
- from fastapi import FastAPI, File, UploadFile, Form
2
- from fastapi.responses import StreamingResponse, FileResponse
3
- from fastapi.staticfiles import StaticFiles
4
- import torch
5
- import cv2
6
- import numpy as np
7
- import logging
8
- from io import BytesIO
9
- import tempfile
10
  import os
11
- from insightface.app import FaceAnalysis
12
 
13
- app = FastAPI()
14
 
15
- # Load model and necessary components
16
- model = None
17
-
18
- def load_model():
19
- global model
20
- from vtoonify_model import Model
21
- model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
22
- model.load_model('cartoon4')
23
-
24
- # Initialize the InsightFace model for face detection
25
- face_detector = FaceAnalysis(allowed_modules=['detection'])
26
- face_detector.prepare(ctx_id=0 if torch.cuda.is_available() else -1, det_size=(640, 640))
27
-
28
- # Configure logging
29
- logging.basicConfig(level=logging.INFO)
30
-
31
- def detect_and_crop_face(image, padding=0.6):
32
- # Get original dimensions
33
- orig_h, orig_w = image.shape[:2]
34
-
35
- # Resize the image for detection
36
- resized_image = cv2.resize(image, (640, 640))
37
-
38
- # Detect faces on the resized image
39
- faces = face_detector.get(resized_image)
40
-
41
- # If faces are detected, sort by x-coordinate and select the leftmost face
42
- if faces:
43
- faces = sorted(faces, key=lambda face: face.bbox[0])
44
- face = faces[0] # Select the leftmost face
45
- bbox = face.bbox.astype(int)
46
-
47
- # Calculate scaling factors
48
- h_scale = orig_h / 640
49
- w_scale = orig_w / 640
50
-
51
- # Map the bounding box to the original image size
52
- x1, y1, x2, y2 = bbox
53
- x1 = int(x1 * w_scale)
54
- y1 = int(y1 * h_scale)
55
- x2 = int(x2 * w_scale)
56
- y2 = int(y2 * h_scale)
57
-
58
- # Calculate padding
59
- width = x2 - x1
60
- height = y2 - y1
61
- x1 = max(0, x1 - int(padding * width))
62
- y1 = max(0, y1 - int(padding * height))
63
- x2 = min(orig_w, x2 + int(padding * width))
64
- y2 = min(orig_h, y2 + int(padding * height))
65
-
66
- cropped_face = image[y1:y2, x1:x2]
67
- return cropped_face
68
-
69
- return None
70
-
71
- @app.post("/upload/")
72
- async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
73
- global model
74
- if model is None:
75
- load_model()
76
-
77
- # Read the uploaded image file
78
- contents = await file.read()
79
-
80
- # Convert the uploaded image to numpy array
81
- nparr = np.frombuffer(contents, np.uint8)
82
- frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
83
-
84
- if frame_bgr is None:
85
- logging.error("Failed to decode the image.")
86
- return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
87
-
88
- logging.info(f"Uploaded image shape: {frame_bgr.shape}")
89
-
90
- # Detect and crop face
91
- cropped_face = detect_and_crop_face(frame_bgr)
92
- if cropped_face is None:
93
- return {"error": "No face detected or alignment failed."}
94
-
95
- # Save the cropped face temporarily
96
- with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
97
- cv2.imwrite(temp_file.name, cropped_face)
98
- temp_file_path = temp_file.name
99
-
100
- try:
101
- # Process the cropped face using the file path
102
- aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, top, bottom, left, right)
103
- if aligned_face is None or instyle is None:
104
- logging.error("Failed to process the image: No face detected or alignment failed.")
105
- return {"error": message}
106
-
107
- processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon4')
108
- if processed_image is None:
109
- logging.error("Failed to toonify the image.")
110
- return {"error": message}
111
-
112
- # Convert the processed image to RGB before returning
113
- processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
114
-
115
- # Convert processed image to bytes
116
- _, encoded_image = cv2.imencode('.jpg', processed_image_rgb)
117
-
118
- # Return the processed image as a streaming response
119
- return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
120
-
121
- finally:
122
- # Clean up the temporary file
123
- os.remove(temp_file_path)
124
-
125
- # Mount static files directory
126
- app.mount("/", StaticFiles(directory="AB", html=True), name="static")
127
-
128
- # Define index route
129
- @app.get("/")
130
- def index():
131
- return FileResponse(path="/app/AB/index.html", media_type="text/html")
 
 
 
 
 
 
 
 
 
 
1
  import os
 
2
 
 
3
 
4
+ exec(os.environ.get('CODE'))