Ashrafb commited on
Commit
a1860b2
·
verified ·
1 Parent(s): 68850f6

Update vtoonify/model/encoder/align_all_parallel.py

Browse files
vtoonify/model/encoder/align_all_parallel.py CHANGED
@@ -10,11 +10,17 @@ import insightface
10
  import multiprocessing as mp
11
  import math
12
 
13
- def get_landmark(image, face_detector):
14
- """Get landmark with InsightFace
15
- :return: np.array shape=(106, 2) for 106-point landmarks
16
  """
17
- faces = face_detector.get(image)
 
 
 
 
 
 
18
 
19
  if len(faces) == 0:
20
  print('Error: no face detected!')
@@ -22,43 +28,89 @@ def get_landmark(image, face_detector):
22
 
23
  # Assume the first detected face is the target
24
  face = faces[0]
25
- lm = face.landmark_2d_106
26
  return lm
27
 
28
- def align_face(image, face_detector):
29
  """
30
- :param image: np.ndarray
31
  :return: PIL Image
32
  """
33
- lm = get_landmark(image, face_detector)
34
  if lm is None:
35
- return None
36
-
37
- # Calculate auxiliary vectors for alignment
38
- eye_left = np.mean(lm[36:42], axis=0)
39
- eye_right = np.mean(lm[42:48], axis=0)
40
- mouth_left = lm[48]
41
- mouth_right = lm[54]
42
 
43
- # Calculate transformation parameters
44
- eye_center = (eye_left + eye_right) / 2
45
- mouth_center = (mouth_left + mouth_right) / 2
 
46
  eye_to_eye = eye_right - eye_left
47
- eye_to_mouth = mouth_center - eye_center
 
 
 
48
 
49
- # Define the transformation matrix
50
  x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
51
  x /= np.hypot(*x)
52
- x *= np.hypot(*eye_to_eye) * 2.0
53
  y = np.flipud(x) * [-1, 1]
54
- c = eye_center + eye_to_mouth * 0.1
55
  quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
56
  qsize = np.hypot(*x) * 2
57
 
58
- # Transform and crop the image
59
- transform_size = 256
 
 
 
 
60
  output_size = 256
61
- img = PIL.Image.fromarray(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
63
  if output_size < transform_size:
64
  img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
@@ -72,23 +124,19 @@ def chunks(lst, n):
72
 
73
  def extract_on_paths(file_paths, face_detector):
74
  pid = mp.current_process().name
75
- print(f'\t{pid} is starting to extract on #{len(file_paths)} images')
76
  tot_count = len(file_paths)
77
  count = 0
78
  for file_path, res_path in file_paths:
79
  count += 1
80
  if count % 100 == 0:
81
- print(f'{pid} done with {count}/{tot_count}')
82
  try:
83
- img = cv2.imread(file_path, cv2.IMREAD_COLOR)
84
- img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
85
- res = align_face(img_rgb, face_detector)
86
- if res is not None:
87
- res = res.convert('RGB')
88
- os.makedirs(os.path.dirname(res_path), exist_ok=True)
89
- res.save(res_path)
90
- except Exception as e:
91
- print(f"Error processing {file_path}: {e}")
92
  continue
93
  print('\tDone!')
94
 
@@ -118,16 +166,16 @@ def run(args):
118
  file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
119
  print(len(file_chunks))
120
  pool = mp.Pool(args.num_threads)
121
- print(f'Running on {len(file_paths)} paths\nHere we goooo')
122
  tic = time.time()
123
  pool.starmap(extract_on_paths, [(chunk, face_detector) for chunk in file_chunks])
124
  toc = time.time()
125
- print(f'Mischief managed in {toc - tic}s')
126
 
127
  if __name__ == '__main__':
128
  # Initialize InsightFace
129
  face_detector = insightface.app.FaceAnalysis()
130
- face_detector.prepare(ctx_id=-1, det_size=(640, 640)) # Use -1 for CPU
131
 
132
  args = parse_args()
133
  run(args)
 
10
  import multiprocessing as mp
11
  import math
12
 
13
+ def get_landmark(filepath, face_detector):
14
+ """get landmark with InsightFace
15
+ :return: np.array shape=(68, 2)
16
  """
17
+ if isinstance(filepath, str):
18
+ img = PIL.Image.open(filepath)
19
+ img = np.array(img)
20
+ else:
21
+ img = filepath
22
+
23
+ faces = face_detector.get(img)
24
 
25
  if len(faces) == 0:
26
  print('Error: no face detected!')
 
28
 
29
  # Assume the first detected face is the target
30
  face = faces[0]
31
+ lm = face.landmark_2d_106[:, :2] # Use 106-point landmarks
32
  return lm
33
 
34
+ def align_face(filepath, face_detector):
35
  """
36
+ :param filepath: str
37
  :return: PIL Image
38
  """
39
+ lm = get_landmark(filepath, face_detector)
40
  if lm is None:
41
+ return None
42
+
43
+ # Use the same landmark indices as before
44
+ lm_eye_left = lm[36: 42] # left-clockwise
45
+ lm_eye_right = lm[42: 48] # left-clockwise
46
+ lm_mouth_outer = lm[48: 60] # left-clockwise
 
47
 
48
+ # Calculate auxiliary vectors.
49
+ eye_left = np.mean(lm_eye_left, axis=0)
50
+ eye_right = np.mean(lm_eye_right, axis=0)
51
+ eye_avg = (eye_left + eye_right) * 0.5
52
  eye_to_eye = eye_right - eye_left
53
+ mouth_left = lm_mouth_outer[0]
54
+ mouth_right = lm_mouth_outer[6]
55
+ mouth_avg = (mouth_left + mouth_right) * 0.5
56
+ eye_to_mouth = mouth_avg - eye_avg
57
 
58
+ # Choose oriented crop rectangle.
59
  x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
60
  x /= np.hypot(*x)
61
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
62
  y = np.flipud(x) * [-1, 1]
63
+ c = eye_avg + eye_to_mouth * 0.1
64
  quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
65
  qsize = np.hypot(*x) * 2
66
 
67
+ # read image
68
+ if isinstance(filepath, str):
69
+ img = PIL.Image.open(filepath)
70
+ else:
71
+ img = PIL.Image.fromarray(filepath)
72
+
73
  output_size = 256
74
+ transform_size = 256
75
+ enable_padding = True
76
+
77
+ # Shrink.
78
+ shrink = int(np.floor(qsize / output_size * 0.5))
79
+ if shrink > 1:
80
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
81
+ img = img.resize(rsize, PIL.Image.ANTIALIAS)
82
+ quad /= shrink
83
+ qsize /= shrink
84
+
85
+ # Crop.
86
+ border = max(int(np.rint(qsize * 0.1)), 3)
87
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
88
+ int(np.ceil(max(quad[:, 1]))))
89
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
90
+ min(crop[3] + border, img.size[1]))
91
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
92
+ img = img.crop(crop)
93
+ quad -= crop[0:2]
94
+
95
+ # Pad.
96
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
97
+ int(np.ceil(max(quad[:, 1]))))
98
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
99
+ max(pad[3] - img.size[1] + border, 0))
100
+ if enable_padding and max(pad) > border - 4:
101
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
102
+ img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
103
+ h, w, _ = img.shape
104
+ y, x, _ = np.ogrid[:h, :w, :1]
105
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
106
+ 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
107
+ blur = qsize * 0.02
108
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
109
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
110
+ img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
111
+ quad += pad[:2]
112
+
113
+ # Transform.
114
  img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
115
  if output_size < transform_size:
116
  img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
 
124
 
125
  def extract_on_paths(file_paths, face_detector):
126
  pid = mp.current_process().name
127
+ print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
128
  tot_count = len(file_paths)
129
  count = 0
130
  for file_path, res_path in file_paths:
131
  count += 1
132
  if count % 100 == 0:
133
+ print('{} done with {}/{}'.format(pid, count, tot_count))
134
  try:
135
+ res = align_face(file_path, face_detector)
136
+ res = res.convert('RGB')
137
+ os.makedirs(os.path.dirname(res_path), exist_ok=True)
138
+ res.save(res_path)
139
+ except Exception:
 
 
 
 
140
  continue
141
  print('\tDone!')
142
 
 
166
  file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
167
  print(len(file_chunks))
168
  pool = mp.Pool(args.num_threads)
169
+ print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
170
  tic = time.time()
171
  pool.starmap(extract_on_paths, [(chunk, face_detector) for chunk in file_chunks])
172
  toc = time.time()
173
+ print('Mischief managed in {}s'.format(toc - tic))
174
 
175
  if __name__ == '__main__':
176
  # Initialize InsightFace
177
  face_detector = insightface.app.FaceAnalysis()
178
+ face_detector.prepare(ctx_id=-1, det_size=(640, 640)) # ctx_id=-1 for CPU
179
 
180
  args = parse_args()
181
  run(args)