from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import StreamingResponse, FileResponse from fastapi.staticfiles import StaticFiles import torch import cv2 import numpy as np import logging from io import BytesIO import tempfile import os app = FastAPI() # Load model and necessary components model = None def load_model(): global model from vtoonify_model import Model model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') model.load_model('cartoon4') # Configure logging logging.basicConfig(level=logging.INFO) @app.post("/upload/") async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)): global model if model is None: load_model() # Read the uploaded image file contents = await file.read() # Convert the uploaded image to numpy array nparr = np.frombuffer(contents, np.uint8) frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default if frame_bgr is None: logging.error("Failed to decode the image.") return {"error": "Failed to decode the image. Please ensure the file is a valid image format."} logging.info(f"Uploaded image shape: {frame_bgr.shape}") # Save the uploaded image temporarily to pass the file path to the model with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: cv2.imwrite(temp_file.name, frame_bgr) temp_file_path = temp_file.name try: # Process the uploaded image using the file path aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, top, bottom, left, right) if aligned_face is None or instyle is None: logging.error("Failed to process the image: No face detected or alignment failed.") return {"error": message} processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1') if processed_image is None: logging.error("Failed to toonify the image.") return {"error": message} # Convert the processed image to RGB before returning processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB) # Convert processed image to bytes _, encoded_image = cv2.imencode('.jpg', processed_image_rgb) # Return the processed image as a streaming response return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg") finally: # Clean up the temporary file os.remove(temp_file_path) # Mount static files directory app.mount("/", StaticFiles(directory="AB", html=True), name="static") # Define index route @app.get("/") def index(): return FileResponse(path="/app/AB/index.html", media_type="text/html")