Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import open3d as o3d
|
4 |
+
import numpy as np
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Title of the App
|
9 |
+
st.title("3D Reconstruction Tool from Video πΉ β π οΈ β π§")
|
10 |
+
|
11 |
+
# Sidebar: Information
|
12 |
+
st.sidebar.write("""
|
13 |
+
## About the App
|
14 |
+
Upload a video file, extract frames, reconstruct a 3D point cloud using Structure from Motion (SfM), and visualize or download the 3D mesh.
|
15 |
+
""")
|
16 |
+
|
17 |
+
# Step 1: Upload Video File
|
18 |
+
uploaded_file = st.file_uploader("Upload a Video File (MP4, AVI)", type=["mp4", "avi"])
|
19 |
+
|
20 |
+
# Function to extract frames from video
|
21 |
+
def extract_frames(video_path, frame_rate=10):
|
22 |
+
cap = cv2.VideoCapture(video_path)
|
23 |
+
frames = []
|
24 |
+
count = 0
|
25 |
+
while cap.isOpened():
|
26 |
+
ret, frame = cap.read()
|
27 |
+
if not ret:
|
28 |
+
break
|
29 |
+
if count % frame_rate == 0:
|
30 |
+
frames.append(frame)
|
31 |
+
count += 1
|
32 |
+
cap.release()
|
33 |
+
return frames
|
34 |
+
|
35 |
+
# Function to save frames as images
|
36 |
+
def save_frames_as_images(frames, output_dir):
|
37 |
+
os.makedirs(output_dir, exist_ok=True)
|
38 |
+
for i, frame in enumerate(frames):
|
39 |
+
filename = os.path.join(output_dir, f"frame_{i:04d}.png")
|
40 |
+
cv2.imwrite(filename, frame)
|
41 |
+
|
42 |
+
# Step 2: Process Uploaded Video
|
43 |
+
if uploaded_file:
|
44 |
+
st.video(uploaded_file)
|
45 |
+
st.write("Extracting frames...")
|
46 |
+
|
47 |
+
# Save the uploaded video temporarily
|
48 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video:
|
49 |
+
tmp_video.write(uploaded_file.read())
|
50 |
+
video_path = tmp_video.name
|
51 |
+
|
52 |
+
# Extract frames
|
53 |
+
frames = extract_frames(video_path, frame_rate=10)
|
54 |
+
st.write(f"β
Extracted {len(frames)} frames from the video.")
|
55 |
+
|
56 |
+
# Save extracted frames
|
57 |
+
frames_dir = tempfile.mkdtemp()
|
58 |
+
save_frames_as_images(frames, frames_dir)
|
59 |
+
st.write(f"Frames saved temporarily at `{frames_dir}`.")
|
60 |
+
|
61 |
+
# Step 3: Structure from Motion (3D Reconstruction)
|
62 |
+
st.write("π Reconstructing 3D point cloud using Structure from Motion...")
|
63 |
+
|
64 |
+
# Create Open3D Point Cloud
|
65 |
+
pcd = o3d.geometry.PointCloud()
|
66 |
+
for image_file in sorted(os.listdir(frames_dir)):
|
67 |
+
img_path = os.path.join(frames_dir, image_file)
|
68 |
+
frame = cv2.imread(img_path)
|
69 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
70 |
+
|
71 |
+
# Dummy point cloud generation for simplicity
|
72 |
+
height, width = gray.shape
|
73 |
+
x, y = np.meshgrid(np.arange(width), np.arange(height))
|
74 |
+
z = gray / 255.0 # Use gray intensity as a pseudo depth
|
75 |
+
points = np.stack((x.flatten(), y.flatten(), z.flatten()), axis=1)
|
76 |
+
pcd.points.extend(o3d.utility.Vector3dVector(points))
|
77 |
+
|
78 |
+
# Step 4: Surface Reconstruction
|
79 |
+
st.write("π οΈ Generating mesh using Poisson Reconstruction...")
|
80 |
+
pcd.estimate_normals()
|
81 |
+
mesh, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=8)
|
82 |
+
|
83 |
+
# Step 5: Visualization
|
84 |
+
st.write("β
Reconstruction Complete! Visualizing the 3D model:")
|
85 |
+
o3d.io.write_triangle_mesh("reconstructed_mesh.stl", mesh)
|
86 |
+
|
87 |
+
# Use Plotly for visualization
|
88 |
+
import plotly.graph_objects as go
|
89 |
+
vertices = np.asarray(mesh.vertices)
|
90 |
+
triangles = np.asarray(mesh.triangles)
|
91 |
+
fig = go.Figure(data=[go.Mesh3d(
|
92 |
+
x=vertices[:, 0],
|
93 |
+
y=vertices[:, 1],
|
94 |
+
z=vertices[:, 2],
|
95 |
+
i=triangles[:, 0],
|
96 |
+
j=triangles[:, 1],
|
97 |
+
k=triangles[:, 2],
|
98 |
+
color='lightblue',
|
99 |
+
opacity=0.50
|
100 |
+
)])
|
101 |
+
st.plotly_chart(fig)
|
102 |
+
|
103 |
+
# Step 6: Download the Optimized Mesh
|
104 |
+
st.write("π₯ Download the reconstructed 3D model:")
|
105 |
+
with open("reconstructed_mesh.stl", "rb") as f:
|
106 |
+
st.download_button("Download 3D Mesh (STL)", f, file_name="reconstructed_mesh.stl")
|