|
import gradio as gr |
|
from PIL import Image, ImageFilter |
|
import numpy as np |
|
import torch |
|
from torch.autograd import Variable |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
import gdown |
|
import os |
|
|
|
os.system("git clone https://github.com/xuebinqin/DIS") |
|
os.system("mv DIS/IS-Net/* .") |
|
|
|
|
|
from data_loader_cache import normalize, im_reader, im_preprocess |
|
from models import * |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
if not os.path.exists("saved_models"): |
|
os.mkdir("saved_models") |
|
MODEL_PATH_URL = "https://drive.google.com/uc?id=1KyMpRjewZdyYfxHPYcd-ZbanIXtin0Sn" |
|
gdown.download(MODEL_PATH_URL, "saved_models/isnet.pth", use_cookies=False) |
|
|
|
class GOSNormalize(object): |
|
''' |
|
Normalize the Image using torch.transforms |
|
''' |
|
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self,image): |
|
image = normalize(image,self.mean,self.std) |
|
return image |
|
|
|
|
|
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) |
|
|
|
def load_image(im_path, hypar): |
|
im = im_reader(im_path) |
|
im, im_shp = im_preprocess(im, hypar["cache_size"]) |
|
im = torch.divide(im,255.0) |
|
shape = torch.from_numpy(np.array(im_shp)) |
|
return transform(im).unsqueeze(0), shape.unsqueeze(0) |
|
|
|
|
|
def build_model(hypar,device): |
|
net = hypar["model"] |
|
|
|
|
|
if(hypar["model_digit"]=="half"): |
|
net.half() |
|
for layer in net.modules(): |
|
if isinstance(layer, nn.BatchNorm2d): |
|
layer.float() |
|
|
|
net.to(device) |
|
|
|
if(hypar["restore_model"]!=""): |
|
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) |
|
net.to(device) |
|
net.eval() |
|
return net |
|
|
|
|
|
def predict(net, inputs_val, shapes_val, hypar, device): |
|
''' |
|
Given an Image, predict the mask |
|
''' |
|
net.eval() |
|
|
|
if(hypar["model_digit"]=="full"): |
|
inputs_val = inputs_val.type(torch.FloatTensor) |
|
else: |
|
inputs_val = inputs_val.type(torch.HalfTensor) |
|
|
|
|
|
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) |
|
|
|
ds_val = net(inputs_val_v)[0] |
|
|
|
pred_val = ds_val[0][0,:,:,:] |
|
|
|
|
|
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) |
|
|
|
ma = torch.max(pred_val) |
|
mi = torch.min(pred_val) |
|
pred_val = (pred_val-mi)/(ma-mi) |
|
|
|
if device == 'cuda': torch.cuda.empty_cache() |
|
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) |
|
|
|
|
|
hypar = {} |
|
|
|
|
|
hypar["model_path"] ="./saved_models" |
|
hypar["restore_model"] = "isnet.pth" |
|
hypar["interm_sup"] = False |
|
|
|
|
|
hypar["model_digit"] = "full" |
|
hypar["seed"] = 0 |
|
|
|
hypar["cache_size"] = [1024, 1024] |
|
|
|
|
|
hypar["input_size"] = [1024, 1024] |
|
hypar["crop_size"] = [1024, 1024] |
|
|
|
hypar["model"] = ISNetDIS() |
|
|
|
|
|
net = build_model(hypar, device) |
|
|
|
|
|
def infer_mask(image: Image): |
|
image_path = image |
|
|
|
image_tensor, orig_size = load_image(image_path, hypar) |
|
mask = predict(net, image_tensor, orig_size, hypar, device) |
|
|
|
return Image.fromarray(mask).convert("L") |
|
|
|
def blur(image_set: list, blur_amount: int): |
|
blurred_image = image_set[0].filter(ImageFilter.GaussianBlur(blur_amount)) |
|
|
|
return Image.composite(image_set[0], blurred_image, image_set[1]) |
|
|
|
|
|
with gr.Blocks() as interface: |
|
default_im = Image.open("newman.jpg").convert("RGB") |
|
default_mask = Image.open("newman_mask.jpg").convert("RGB") |
|
examples_list = [os.path.join(os.path.dirname(__file__), "newman.jpg"), |
|
os.path.join(os.path.dirname(__file__), "abbey.jpg"), |
|
os.path.join(os.path.dirname(__file__), "julia.jpg") |
|
] |
|
|
|
current_images = gr.State([default_im, default_mask]) |
|
mask_toggle = gr.State(False) |
|
|
|
gr.Markdown( |
|
""" |
|
### Intelligent Photo Blur Using Dichotomous Image Segmentation |
|
|
|
This app leverages the machine learning engine built by Xuebin Qin ([https://github.com/xuebinqin/DIS](https://github.com/xuebinqin/DIS)) to mask the prominent subject within a photograph. |
|
The mask is used to keep the subject in clear focus while an adjustable slider is available to interactively blur the background. |
|
To use, upload a photo and press the run button. You can adjust the level of blur through the slider and view the mask using the "Show Generated Mask" button. |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(value=default_im, type='filepath') |
|
run_button = gr.Button() |
|
gr.Examples(inputs=input_image, examples=examples_list) |
|
with gr.Column(): |
|
output_image = gr.Image() |
|
blur_slider = gr.Slider(0, 16, 5, step=1, label="Blur Amount") |
|
mask_button = gr.Button(value="Show Generated Mask") |
|
mask_image = gr.Image(value=default_mask, visible=False) |
|
|
|
def run(image: Image, current_images: gr.State): |
|
im_rgb = Image.open(image).convert("RGB") |
|
mask = infer_mask(image) |
|
|
|
return ( |
|
blur([im_rgb, mask], 5), |
|
mask, |
|
[im_rgb, mask] |
|
) |
|
|
|
def reset_slider(): |
|
return gr.update(value=5) |
|
|
|
def show_mask(mask_toggle: gr.State): |
|
if mask_toggle == True: |
|
return gr.update(visible=False) |
|
else: |
|
return gr.update(visible=True) |
|
|
|
def toggle_mask(mask_toggle: gr.State): |
|
if mask_toggle == True: |
|
return False |
|
else: |
|
return True |
|
|
|
run_button.click(run, [input_image, current_images], [output_image, mask_image, current_images]) |
|
run_button.click(reset_slider, outputs=blur_slider) |
|
blur_slider.change(blur, [current_images, blur_slider], output_image, show_progress=False) |
|
mask_button.click(show_mask, inputs=mask_toggle, outputs=mask_image) |
|
mask_button.click(toggle_mask, inputs=mask_toggle, outputs=mask_toggle) |
|
|
|
interface.launch() |