Spaces:
Build error
Build error
import os | |
import json | |
import time | |
import random | |
from collections import defaultdict | |
from datetime import date, datetime, timedelta | |
import gradio as gr | |
import pandas as pd | |
import finnhub | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
from io import StringIO | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
import sys | |
import platform | |
import psutil | |
from importlib import metadata | |
# Suppress Google Cloud warnings | |
os.environ['GRPC_VERBOSITY'] = 'ERROR' | |
os.environ['GRPC_TRACE'] = '' | |
# Suppress other warnings | |
import warnings | |
warnings.filterwarnings('ignore', category=UserWarning) | |
warnings.filterwarnings('ignore', category=FutureWarning) | |
# ---------- CẤU HÌNH --------------------------------------------------------- | |
# Local GGUF model settings (CPU-only) | |
LLAMA_REPO_ID = "mradermacher/Fin-o1-8B-GGUF" | |
LLAMA_FILENAME = os.getenv("FIN_O1_GGUF_FILENAME", "Fin-o1-8B.Q4_K_S.gguf") | |
LLAMA_CTX = int(os.getenv("FIN_O1_CTX", "4096")) | |
LLAMA_THREADS = int(os.getenv("FIN_O1_THREADS", str(max(1, (os.cpu_count() or 2) - 0)))) | |
LLAMA_N_GPU_LAYERS = 0 # CPU Spaces only | |
# RapidAPI Configuration | |
RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com" | |
# Load Finnhub API keys from single secret (multiple keys separated by newlines) | |
FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "") | |
if FINNHUB_KEYS_RAW: | |
FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()] | |
else: | |
FINNHUB_KEYS = [] | |
# Load RapidAPI keys from single secret (multiple keys separated by newlines) | |
RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "") | |
if RAPIDAPI_KEYS_RAW: | |
RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()] | |
else: | |
RAPIDAPI_KEYS = [] | |
GOOGLE_API_KEYS = [] # Not used; we run local GGUF | |
# Filter out empty keys | |
FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()] | |
GOOGLE_API_KEYS = [key for key in GOOGLE_API_KEYS if key.strip()] | |
# Validate that we have at least one key for each service | |
if not FINNHUB_KEYS: | |
print("⚠️ Warning: No Finnhub API keys found in secrets") | |
if not RAPIDAPI_KEYS: | |
print("⚠️ Warning: No RapidAPI keys found in secrets") | |
if True: | |
pass | |
# Chọn ngẫu nhiên một khóa API để bắt đầu (if available) | |
GOOGLE_API_KEY = random.choice(GOOGLE_API_KEYS) if GOOGLE_API_KEYS else None | |
print("=" * 50) | |
print("🚀 FinRobot Forecaster Starting Up...") | |
print("=" * 50) | |
if FINNHUB_KEYS: | |
print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded") | |
else: | |
print("📊 Finnhub API: Not configured") | |
if RAPIDAPI_KEYS: | |
print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)") | |
else: | |
print("📈 RapidAPI Alpha Vantage: Not configured") | |
if GOOGLE_API_KEYS: | |
print(f"🤖 Google Gemini API: {len(GOOGLE_API_KEYS)} keys loaded") | |
else: | |
print("🤖 Google Gemini API: Not configured") | |
print("✅ Application started successfully!") | |
print("=" * 50) | |
# Initialize local llama.cpp model (download if needed) | |
llm: Llama | None = None | |
try: | |
print("🧠 Initializing local Fin-o1 GGUF model via llama.cpp...") | |
gguf_path = hf_hub_download(repo_id=LLAMA_REPO_ID, filename=LLAMA_FILENAME, local_files_only=False) | |
llm = Llama( | |
model_path=gguf_path, | |
n_ctx=LLAMA_CTX, | |
n_threads=LLAMA_THREADS, | |
n_gpu_layers=LLAMA_N_GPU_LAYERS, | |
verbose=False, | |
) | |
print(f"✅ Loaded GGUF model: {LLAMA_REPO_ID}/{LLAMA_FILENAME} (ctx={LLAMA_CTX}, threads={LLAMA_THREADS})") | |
except Exception as e: | |
print(f"⚠️ Failed to initialize local GGUF model: {e}") | |
llm = None | |
# ---------- DEBUG / DIAGNOSTICS --------------------------------------------- | |
def get_package_version_safe(package_name: str) -> str: | |
try: | |
return metadata.version(package_name) | |
except Exception: | |
return "not installed" | |
def build_debug_info() -> str: | |
torch_version = "not installed" | |
try: | |
import torch # type: ignore | |
torch_version = getattr(torch, "__version__", "unknown") | |
except Exception: | |
pass | |
process = psutil.Process() | |
mem = psutil.virtual_memory() | |
cpu_percent = psutil.cpu_percent(interval=0.2) | |
proc_mem = process.memory_info().rss | |
lines = [] | |
# Model | |
lines.append("[Model]") | |
lines.append(f"Name: {LLAMA_FILENAME}") | |
lines.append(f"Repo: {LLAMA_REPO_ID}") | |
lines.append(f"Loaded: {bool(llm)}") | |
lines.append(f"Context Length: {LLAMA_CTX}") | |
lines.append(f"Threads: {LLAMA_THREADS}") | |
lines.append(f"GPU Layers: {LLAMA_N_GPU_LAYERS}") | |
# Libraries | |
lines.append("\n[Libraries]") | |
lines.append(f"python: {sys.version.split()[0]}") | |
lines.append(f"gradio: {get_package_version_safe('gradio')}") | |
lines.append(f"pandas: {get_package_version_safe('pandas')}") | |
lines.append(f"requests: {get_package_version_safe('requests')}") | |
lines.append(f"huggingface_hub: {get_package_version_safe('huggingface-hub')}") | |
lines.append(f"llama_cpp_python: {get_package_version_safe('llama-cpp-python')}") | |
lines.append(f"torch: {torch_version}") | |
# System | |
lines.append("\n[System]") | |
lines.append(f"OS: {platform.system()} {platform.release()} ({platform.machine()})") | |
lines.append(f"CPU Cores: {os.cpu_count()}") | |
lines.append(f"CPU Usage: {cpu_percent:.1f}%") | |
lines.append(f"RAM Total: {mem.total/ (1024**3):.2f} GB") | |
lines.append(f"RAM Used: {mem.used/ (1024**3):.2f} GB ({mem.percent:.1f}%)") | |
lines.append(f"Process RSS: {proc_mem/ (1024**2):.1f} MB") | |
return "\n".join(lines) | |
# Cấu hình Finnhub client (if keys available) | |
if FINNHUB_KEYS: | |
# Configure with first key for initial setup | |
finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0]) | |
print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys") | |
else: | |
finnhub_client = None | |
print("⚠️ Finnhub not configured - will use mock news data") | |
# Tạo session với retry strategy cho requests | |
def create_session(): | |
session = requests.Session() | |
retry_strategy = Retry( | |
total=3, | |
backoff_factor=1, | |
status_forcelist=[429, 500, 502, 503, 504], | |
) | |
adapter = HTTPAdapter(max_retries=retry_strategy) | |
session.mount("http://", adapter) | |
session.mount("https://", adapter) | |
return session | |
# Tạo session global | |
requests_session = create_session() | |
SYSTEM_PROMPT = ( | |
"You are a seasoned stock-market analyst. " | |
"Given recent company news and optional basic financials, " | |
"return:\n" | |
"[Positive Developments] – 2-4 bullets\n" | |
"[Potential Concerns] – 2-4 bullets\n" | |
"[Prediction & Analysis] – a one-week price outlook with rationale." | |
) | |
# ---------- UTILITY HELPERS ---------------------------------------- | |
def today() -> str: | |
return date.today().strftime("%Y-%m-%d") | |
def n_weeks_before(date_string: str, n: int) -> str: | |
return (datetime.strptime(date_string, "%Y-%m-%d") - | |
timedelta(days=7 * n)).strftime("%Y-%m-%d") | |
# ---------- DATA FETCHING -------------------------------------------------- | |
def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame: | |
# Thử tất cả RapidAPI Alpha Vantage keys | |
for rapidapi_key in RAPIDAPI_KEYS: | |
try: | |
print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)") | |
# RapidAPI Alpha Vantage endpoint | |
url = f"https://{RAPIDAPI_HOST}/query" | |
headers = { | |
"X-RapidAPI-Host": RAPIDAPI_HOST, | |
"X-RapidAPI-Key": rapidapi_key | |
} | |
params = { | |
"function": "TIME_SERIES_DAILY", | |
"symbol": symbol, | |
"outputsize": "full", | |
"datatype": "csv" | |
} | |
# Thử lại 3 lần với RapidAPI key hiện tại | |
for attempt in range(3): | |
try: | |
resp = requests_session.get(url, headers=headers, params=params, timeout=30) | |
if not resp.ok: | |
print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}") | |
time.sleep(2 ** attempt) | |
continue | |
text = resp.text.strip() | |
if text.startswith("{"): | |
info = resp.json() | |
msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info) | |
if "rate limit" in msg.lower() or "quota" in msg.lower(): | |
print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key") | |
break # Thử key tiếp theo | |
raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}") | |
# Parse CSV data | |
df = pd.read_csv(StringIO(text)) | |
date_col = "timestamp" if "timestamp" in df.columns else df.columns[0] | |
df[date_col] = pd.to_datetime(df[date_col]) | |
df = df.sort_values(date_col).set_index(date_col) | |
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []} | |
for i in range(len(steps) - 1): | |
s_date = pd.to_datetime(steps[i]) | |
e_date = pd.to_datetime(steps[i+1]) | |
seg = df.loc[s_date:e_date] | |
if seg.empty: | |
raise RuntimeError( | |
f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]} – {steps[i+1]}" | |
) | |
data["Start Date"].append(seg.index[0]) | |
data["Start Price"].append(seg["close"].iloc[0]) | |
data["End Date"].append(seg.index[-1]) | |
data["End Price"].append(seg["close"].iloc[-1]) | |
time.sleep(1) # RapidAPI has higher limits | |
print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)") | |
return pd.DataFrame(data) | |
except requests.exceptions.Timeout: | |
print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}") | |
if attempt < 2: | |
time.sleep(5 * (attempt + 1)) | |
continue | |
else: | |
break | |
except requests.exceptions.RequestException as e: | |
print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}") | |
if attempt < 2: | |
time.sleep(3) | |
continue | |
else: | |
break | |
except Exception as e: | |
print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}") | |
continue # Thử key tiếp theo | |
# Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail | |
print("⚠️ All RapidAPI keys failed, using mock data for demonstration...") | |
return create_mock_stock_data(symbol, steps) | |
def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame: | |
"""Tạo mock data để demo khi API không hoạt động""" | |
import numpy as np | |
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []} | |
# Giá cơ bản khác nhau cho các symbol khác nhau | |
base_prices = { | |
"AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0, | |
"TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0 | |
} | |
base_price = base_prices.get(symbol.upper(), 150.0) | |
for i in range(len(steps) - 1): | |
s_date = pd.to_datetime(steps[i]) | |
e_date = pd.to_datetime(steps[i+1]) | |
# Tạo giá ngẫu nhiên với xu hướng tăng nhẹ | |
start_price = base_price + np.random.normal(0, 5) | |
end_price = start_price + np.random.normal(2, 8) # Xu hướng tăng nhẹ | |
data["Start Date"].append(s_date) | |
data["Start Price"].append(round(start_price, 2)) | |
data["End Date"].append(e_date) | |
data["End Price"].append(round(end_price, 2)) | |
base_price = end_price # Cập nhật giá cơ bản cho tuần tiếp theo | |
return pd.DataFrame(data) | |
def current_basics(symbol: str, curday: str) -> dict: | |
# Check if Finnhub is configured | |
if not FINNHUB_KEYS: | |
print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}") | |
return {} | |
# Thử với tất cả các Finnhub API keys | |
for api_key in FINNHUB_KEYS: | |
try: | |
client = finnhub.Client(api_key=api_key) | |
# Thêm timeout cho Finnhub client | |
raw = client.company_basic_financials(symbol, "all") | |
if not raw["series"]: | |
continue | |
merged = defaultdict(dict) | |
for metric, vals in raw["series"]["quarterly"].items(): | |
for v in vals: | |
merged[v["period"]][metric] = v["v"] | |
latest = max((p for p in merged if p <= curday), default=None) | |
if latest is None: | |
continue | |
d = dict(merged[latest]) | |
d["period"] = latest | |
return d | |
except Exception as e: | |
print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}") | |
time.sleep(2) # Thêm delay trước khi thử key tiếp theo | |
continue | |
return {} | |
def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame: | |
news_col = [] | |
for _, row in df.iterrows(): | |
start = row["Start Date"].strftime("%Y-%m-%d") | |
end = row["End Date"].strftime("%Y-%m-%d") | |
time.sleep(2) # Tăng delay để tránh rate limit | |
# Check if Finnhub is configured | |
if not FINNHUB_KEYS: | |
print(f"⚠️ Finnhub not configured, using mock news for {symbol}") | |
news_data = create_mock_news(symbol, start, end) | |
news_col.append(json.dumps(news_data)) | |
continue | |
# Thử với tất cả các Finnhub API keys | |
news_data = [] | |
for api_key in FINNHUB_KEYS: | |
try: | |
client = finnhub.Client(api_key=api_key) | |
weekly = client.company_news(symbol, _from=start, to=end) | |
weekly_fmt = [ | |
{ | |
"date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"), | |
"headline": n["headline"], | |
"summary" : n["summary"], | |
} | |
for n in weekly | |
] | |
weekly_fmt.sort(key=lambda x: x["date"]) | |
news_data = weekly_fmt | |
break # Thành công, thoát khỏi loop | |
except Exception as e: | |
print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}") | |
time.sleep(3) # Thêm delay trước khi thử key tiếp theo | |
continue | |
# Nếu không có news data, tạo mock news | |
if not news_data: | |
news_data = create_mock_news(symbol, start, end) | |
news_col.append(json.dumps(news_data)) | |
df["News"] = news_col | |
return df | |
def create_mock_news(symbol: str, start: str, end: str) -> list: | |
"""Tạo mock news data khi API không hoạt động""" | |
mock_news = [ | |
{ | |
"date": f"{start}120000", | |
"headline": f"{symbol} Shows Strong Performance in Recent Trading", | |
"summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment." | |
}, | |
{ | |
"date": f"{end}090000", | |
"headline": f"Analysts Maintain Positive Outlook for {symbol}", | |
"summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects." | |
} | |
] | |
return mock_news | |
# ---------- PROMPT CONSTRUCTION ------------------------------------------- | |
def sample_news(news: list[str], k: int = 5) -> list[str]: | |
if len(news) <= k: | |
return news | |
return [news[i] for i in sorted(random.sample(range(len(news)), k))] | |
def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str: | |
# Thử với tất cả các Finnhub API keys để lấy company profile | |
company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n" | |
if FINNHUB_KEYS: | |
for api_key in FINNHUB_KEYS: | |
try: | |
client = finnhub.Client(api_key=api_key) | |
prof = client.company_profile2(symbol=symbol) | |
company_blurb = ( | |
f"[Company Introduction]:\n{prof['name']} operates in the " | |
f"{prof['finnhubIndustry']} sector ({prof['country']}). " | |
f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} " | |
f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n" | |
) | |
break # Thành công, thoát khỏi loop | |
except Exception as e: | |
print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}") | |
time.sleep(2) # Thêm delay trước khi thử key tiếp theo | |
continue | |
else: | |
print(f"⚠️ Finnhub not configured, using basic company info for {symbol}") | |
# Past weeks block | |
past_block = "" | |
for _, row in df.iterrows(): | |
term = "increased" if row["End Price"] > row["Start Price"] else "decreased" | |
head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, " | |
f"{symbol}'s stock price {term} from " | |
f"{row['Start Price']:.2f} to {row['End Price']:.2f}.") | |
news_items = json.loads(row["News"]) | |
summaries = [ | |
f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n" | |
for n in news_items | |
if not n["summary"].startswith("Looking for stock market analysis") | |
] | |
past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5)) | |
# Optional basic financials | |
if use_basics: | |
basics = current_basics(symbol, curday) | |
if basics: | |
basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period") | |
basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n") | |
else: | |
basics_block = "\n[Basic Financials]: not available\n" | |
else: | |
basics_block = "\n[Basic Financials]: not requested\n" | |
horizon = f"{curday} to {n_weeks_before(curday, -1)}" | |
final_user_msg = ( | |
company_blurb | |
+ past_block | |
+ basics_block | |
+ f"\nBased on all information before {curday}, analyse positive " | |
"developments and potential concerns for {symbol}, then predict its " | |
f"price movement for next week ({horizon})." | |
) | |
return final_user_msg | |
# ---------- LLM CALL ------------------------------------------------------- | |
def chat_completion(prompt: str, | |
model: str = "fin-o1-gguf", | |
temperature: float = 0.2, | |
stream: bool = False, | |
symbol: str = "STOCK") -> str: | |
# Prefer local llama.cpp model | |
if llm is None: | |
print(f"⚠️ Local GGUF model unavailable, using mock response for {symbol}") | |
return create_mock_ai_response(symbol) | |
# Build chat messages following common role schema | |
messages = [ | |
{"role": "system", "content": SYSTEM_PROMPT}, | |
{"role": "user", "content": prompt}, | |
] | |
try: | |
if stream: | |
# llama.cpp streaming via callbacks is more involved; use non-stream here | |
pass | |
result = llm.create_chat_completion( | |
messages=messages, | |
temperature=temperature, | |
top_p=0.9, | |
max_tokens=1536, | |
) | |
text = result.get("choices", [{}])[0].get("message", {}).get("content", "") | |
if not text: | |
# Fallback to completion API with manual prompt | |
full_prompt = f"{SYSTEM_PROMPT}\n\n{prompt}\n" | |
comp = llm( | |
full_prompt, | |
max_tokens=1536, | |
temperature=temperature, | |
top_p=0.9, | |
) | |
text = comp.get("choices", [{}])[0].get("text", "") | |
return text.strip() if text else create_mock_ai_response(symbol) | |
except Exception as e: | |
print(f"⚠️ Local generation failed: {e}") | |
return create_mock_ai_response(symbol) | |
def create_mock_ai_response(symbol: str) -> str: | |
"""Tạo mock AI response khi Google API không hoạt động""" | |
return f""" | |
[Positive Developments] | |
• Strong market position and brand recognition for {symbol} | |
• Recent quarterly earnings showing growth potential | |
• Positive analyst sentiment and institutional investor interest | |
• Technological innovation and market expansion opportunities | |
[Potential Concerns] | |
• Market volatility and economic uncertainty | |
• Competitive pressures in the industry | |
• Regulatory changes that may impact operations | |
• Global economic factors affecting stock performance | |
[Prediction & Analysis] | |
Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns. | |
Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals. | |
""" | |
# ---------- MAIN PREDICTION FUNCTION ----------------------------------------- | |
def predict(symbol: str = "AAPL", | |
curday: str = today(), | |
n_weeks: int = 3, | |
use_basics: bool = False, | |
stream: bool = False) -> tuple[str, str]: | |
try: | |
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1] | |
df = get_stock_data(symbol, steps) | |
df = attach_news(symbol, df) | |
prompt_info = make_prompt(symbol, df, curday, use_basics) | |
answer = chat_completion(prompt_info, stream=stream, symbol=symbol) | |
return prompt_info, answer | |
except Exception as e: | |
error_msg = f"Error in prediction: {str(e)}" | |
print(f"Prediction error: {e}") # Log the error for debugging | |
return error_msg, error_msg | |
# ---------- HUGGINGFACE SPACES INTERFACE ----------------------------------------- | |
def hf_predict(symbol, n_weeks, use_basics): | |
# 1. get curday | |
curday = date.today().strftime("%Y-%m-%d") | |
# 2. call predict | |
prompt, answer = predict( | |
symbol=symbol.upper(), | |
curday=curday, | |
n_weeks=int(n_weeks), | |
use_basics=bool(use_basics), | |
stream=False | |
) | |
return prompt, answer | |
# ---------- GRADIO INTERFACE ----------------------------------------- | |
def create_interface(): | |
with gr.Blocks( | |
title="FinRobot Forecaster", | |
theme=gr.themes.Soft(), | |
css=""" | |
.gradio-container { | |
max-width: 1200px !important; | |
margin: auto !important; | |
} | |
#model_prompt_textbox textarea { | |
overflow-y: auto !important; | |
max-height: none !important; | |
min-height: 400px !important; | |
resize: vertical !important; | |
white-space: pre-wrap !important; | |
word-wrap: break-word !important; | |
height: auto !important; | |
} | |
#model_prompt_textbox { | |
height: auto !important; | |
} | |
#analysis_results_textbox textarea { | |
overflow-y: auto !important; | |
max-height: none !important; | |
min-height: 400px !important; | |
resize: vertical !important; | |
white-space: pre-wrap !important; | |
word-wrap: break-word !important; | |
height: auto !important; | |
} | |
#analysis_results_textbox { | |
height: auto !important; | |
} | |
.textarea textarea { | |
overflow-y: auto !important; | |
max-height: 500px !important; | |
resize: vertical !important; | |
} | |
.textarea { | |
height: auto !important; | |
min-height: 300px !important; | |
} | |
.gradio-textbox { | |
height: auto !important; | |
max-height: none !important; | |
} | |
.gradio-textbox textarea { | |
height: auto !important; | |
max-height: none !important; | |
overflow-y: auto !important; | |
} | |
""" | |
) as demo: | |
gr.Markdown(""" | |
# 🤖 FinRobot Forecaster | |
**AI-powered stock market analysis and prediction using advanced language models** | |
This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions. | |
⚠️ **Note**: Free API keys have daily rate limits. If you encounter errors, the app will use mock data for demonstration purposes. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
symbol = gr.Textbox( | |
label="Stock Symbol", | |
value="AAPL", | |
placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)", | |
info="Enter the ticker symbol of the stock you want to analyze" | |
) | |
n_weeks = gr.Slider( | |
1, 6, | |
value=3, | |
step=1, | |
label="Historical Weeks to Analyze", | |
info="Number of weeks of historical data to include in analysis" | |
) | |
use_basics = gr.Checkbox( | |
label="Include Basic Financials", | |
value=True, | |
info="Include basic financial metrics in the analysis" | |
) | |
btn = gr.Button( | |
"🚀 Run Analysis", | |
variant="primary" | |
) | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("📊 Analysis Results"): | |
gr.Markdown("**AI Analysis & Prediction**") | |
output_answer = gr.Textbox( | |
label="", | |
lines=40, | |
show_copy_button=True, | |
interactive=False, | |
placeholder="AI analysis and predictions will appear here...", | |
container=True, | |
scale=1, | |
elem_id="analysis_results_textbox" | |
) | |
with gr.Tab("🔍 Model Prompt"): | |
gr.Markdown("**Generated Prompt**") | |
output_prompt = gr.Textbox( | |
label="", | |
lines=40, | |
show_copy_button=True, | |
interactive=False, | |
placeholder="Generated prompt will appear here...", | |
container=True, | |
scale=1, | |
elem_id="model_prompt_textbox" | |
) | |
with gr.Tab("🛠️ Debug"): | |
gr.Markdown("**Runtime Diagnostics**") | |
debug_text = gr.Textbox( | |
label="", | |
lines=30, | |
show_copy_button=True, | |
interactive=False, | |
placeholder="System and model diagnostics will appear here...", | |
container=True, | |
scale=1, | |
) | |
refresh_btn = gr.Button("🔄 Refresh Debug Info") | |
# Examples | |
gr.Examples( | |
examples=[ | |
["AAPL", 3, False], | |
["MSFT", 4, True], | |
["GOOGL", 2, False], | |
["TSLA", 5, True], | |
["NVDA", 3, True] | |
], | |
inputs=[symbol, n_weeks, use_basics], | |
label="💡 Try these examples" | |
) | |
# Event handlers | |
btn.click( | |
fn=hf_predict, | |
inputs=[symbol, n_weeks, use_basics], | |
outputs=[output_prompt, output_answer], | |
show_progress=True | |
) | |
# Populate/refresh debug info | |
def ui_get_debug_info(): | |
try: | |
return build_debug_info() | |
except Exception as e: | |
return f"Failed to build debug info: {e}" | |
refresh_btn.click( | |
fn=ui_get_debug_info, | |
inputs=[], | |
outputs=[debug_text], | |
) | |
# Also refresh debug info after analysis run | |
btn.click( | |
fn=ui_get_debug_info, | |
inputs=[], | |
outputs=[debug_text], | |
show_progress=False, | |
) | |
# Footer | |
gr.Markdown(""" | |
--- | |
**Disclaimer**: This application is for educational and research purposes only. | |
The predictions and analysis provided should not be considered as financial advice. | |
Always consult with qualified financial professionals before making investment decisions. | |
""") | |
return demo | |
# ---------- MAIN EXECUTION ----------------------------------------- | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
show_error=True, | |
debug=False, | |
quiet=True | |
) | |