import torch.cuda
import torch.backends
import os
import logging
import uuid

LOG_FORMAT = "%(levelname) -5s %(asctime)s" "-1d: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)

# 在以下字典中修改属性值,以指定本地embedding模型存储位置
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
# 此处请写绝对路径
embedding_model_dict = {
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec-base": "shibing624/text2vec-base-chinese",
    "text2vec": "/home/wsy/Langchain-chat/embedding/text2vec-large-chinese",
    "text2vec-base-multilingual": "shibing624/text2vec-base-multilingual",
    "text2vec-base-chinese-sentence": "shibing624/text2vec-base-chinese-sentence",
    "text2vec-base-chinese-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
    "m3e-small": "moka-ai/m3e-small",
    "m3e-base": "moka-ai/m3e-base",
}

# Embedding model name
EMBEDDING_MODEL = "text2vec"

# Embedding running device
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

# supported LLM models
# llm_model_dict 处理了loader的一些预设行为,如加载位置,模型名称,模型处理器实例
# 在以下字典中修改属性值,以指定本地 LLM 模型存储位置
# 如将 "chatglm-6b" 的 "local_model_path" 由 None 修改为 "User/Downloads/chatglm-6b"
# 此处请写绝对路径,且路径中必须包含repo-id的模型名称,因为FastChat是以模型名匹配的
llm_model_dict = {
    "chatglm-6b-int4-qe": {
        "name": "chatglm-6b-int4-qe",
        "pretrained_model_name": "THUDM/chatglm-6b-int4-qe",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatglm-6b-int4": {
        "name": "chatglm-6b-int4",
        "pretrained_model_name": "THUDM/chatglm-6b-int4",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatglm-6b-int8": {
        "name": "chatglm-6b-int8",
        "pretrained_model_name": "THUDM/chatglm-6b-int8",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatglm-6b": {
        "name": "chatglm-6b",
        "pretrained_model_name": "THUDM/chatglm-6b",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    # langchain-ChatGLM 用户“帛凡” @BoFan-tunning 基于ChatGLM-6B 训练并提供的权重合并模型和 lora 权重文件 chatglm-fitness-RLHF
    # 详细信息见 HuggingFace 模型介绍页 https://huggingface.co/fb700/chatglm-fitness-RLHF
    # 使用该模型或者lora权重文件,对比chatglm-6b、chatglm2-6b、百川7b,甚至其它未经过微调的更高参数的模型,在本项目中,总结能力可获得显著提升。
    "chatglm-fitness-RLHF": {
        "name": "chatglm-fitness-RLHF",
        "pretrained_model_name": "/home/wsy/chatglm-fitness-RLHF",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatglm2-6b": {
        "name": "chatglm2-6b",
        "pretrained_model_name": "/home/xwy/chatglm2-6b",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatglm2-6b-32k": {
        "name": "chatglm2-6b-32k",
        "pretrained_model_name": "THUDM/chatglm2-6b-32k",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    # 注:chatglm2-cpp已在mac上测试通过,其他系统暂不支持
    "chatglm2-cpp": {
        "name": "chatglm2-cpp",
        "pretrained_model_name": "cylee0909/chatglm2cpp",
        "local_model_path": None,
        "provides": "ChatGLMCppLLMChain"
    },
    "chatglm2-6b-int4": {
        "name": "chatglm2-6b-int4",
        "pretrained_model_name": "THUDM/chatglm2-6b-int4",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatglm2-6b-int8": {
        "name": "chatglm2-6b-int8",
        "pretrained_model_name": "THUDM/chatglm2-6b-int8",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    "chatyuan": {
        "name": "chatyuan",
        "pretrained_model_name": "ClueAI/ChatYuan-large-v2",
        "local_model_path": None,
        "provides": "MOSSLLMChain"
    },
    "moss": {
        "name": "moss",
        "pretrained_model_name": "fnlp/moss-moon-003-sft",
        "local_model_path": None,
        "provides": "MOSSLLMChain"
    },
    "moss-int4": {
        "name": "moss",
        "pretrained_model_name": "fnlp/moss-moon-003-sft-int4",
        "local_model_path": None,
        "provides": "MOSSLLM"
    },
    "vicuna-13b-hf": {
        "name": "vicuna-13b-hf",
        "pretrained_model_name": "vicuna-13b-hf",
        "local_model_path": None,
        "provides": "LLamaLLMChain"
    },
    "vicuna-7b-hf": {
        "name": "vicuna-13b-hf",
        "pretrained_model_name": "vicuna-13b-hf",
        "local_model_path": None,
        "provides": "LLamaLLMChain"
    },
    # 直接调用返回requests.exceptions.ConnectionError错误,需要通过huggingface_hub包里的snapshot_download函数
    # 下载模型,如果snapshot_download还是返回网络错误,多试几次,一般是可以的,
    # 如果仍然不行,则应该是网络加了防火墙(在服务器上这种情况比较常见),基本只能从别的设备上下载,
    # 然后转移到目标设备了.
    "bloomz-7b1": {
        "name": "bloomz-7b1",
        "pretrained_model_name": "bigscience/bloomz-7b1",
        "local_model_path": None,
        "provides": "MOSSLLMChain"

    },
    # 实测加载bigscience/bloom-3b需要170秒左右,暂不清楚为什么这么慢
    # 应与它要加载专有token有关
    "bloom-3b": {
        "name": "bloom-3b",
        "pretrained_model_name": "bigscience/bloom-3b",
        "local_model_path": None,
        "provides": "MOSSLLMChain"

    },
    "baichuan-7b": {
        "name": "baichuan-7b",
        "pretrained_model_name": "/home/wsy/baichuan7b-chat",
        "local_model_path": None,
        "provides": "MOSSLLMChain"
    },
    "Baichuan-13b-Chat": {
        "name": "Baichuan-13b-Chat",
        "pretrained_model_name": "baichuan-inc/Baichuan-13b-Chat",
        "local_model_path": None,
        "provides": "BaichuanLLMChain"
    },
    # llama-cpp模型的兼容性问题参考https://github.com/abetlen/llama-cpp-python/issues/204
    "ggml-vicuna-13b-1.1-q5": {
        "name": "ggml-vicuna-13b-1.1-q5",
        "pretrained_model_name": "lmsys/vicuna-13b-delta-v1.1",
        # 这里需要下载好模型的路径,如果下载模型是默认路径则它会下载到用户工作区的
        # /.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/
        # 还有就是由于本项目加载模型的方式设置的比较严格,下载完成后仍需手动修改模型的文件名
        # 将其设置为与Huggface Hub一致的文件名
        # 此外不同时期的ggml格式并不兼容,因此不同时期的ggml需要安装不同的llama-cpp-python库,且实测pip install 不好使
        # 需要手动从https://github.com/abetlen/llama-cpp-python/releases/tag/下载对应的wheel安装
        # 实测v0.1.63与本模型的vicuna/ggml-vicuna-13b-1.1/ggml-vic13b-q5_1.bin可以兼容
        "local_model_path": f'''{"/".join(os.path.abspath(__file__).split("/")[:3])}/.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/blobs/''',
        "provides": "LLamaLLMChain"
    },

    # 通过 fastchat 调用的模型请参考如下格式
    "fastchat-chatglm-6b": {
        "name": "chatglm-6b",  # "name"修改为fastchat服务中的"model_name"
        "pretrained_model_name": "chatglm-6b",
        "local_model_path": None,
        "provides": "FastChatOpenAILLMChain",  # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
        "api_base_url": "http://localhost:8000/v1",  # "name"修改为fastchat服务中的"api_base_url"
        "api_key": "EMPTY"
    },
        # 通过 fastchat 调用的模型请参考如下格式
    "fastchat-chatglm-6b-int4": {
        "name": "chatglm-6b-int4",  # "name"修改为fastchat服务中的"model_name"
        "pretrained_model_name": "chatglm-6b-int4",
        "local_model_path": None,
        "provides": "FastChatOpenAILLMChain",  # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
        "api_base_url": "http://localhost:8001/v1",  # "name"修改为fastchat服务中的"api_base_url"
        "api_key": "EMPTY"
    },
    "fastchat-chatglm2-6b": {
        "name": "chatglm2-6b",  # "name"修改为fastchat服务中的"model_name"
        "pretrained_model_name": "chatglm2-6b",
        "local_model_path": None,
        "provides": "FastChatOpenAILLMChain",  # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
        "api_base_url": "http://localhost:8000/v1"  # "name"修改为fastchat服务中的"api_base_url"
    },

    # 通过 fastchat 调用的模型请参考如下格式
    "fastchat-vicuna-13b-hf": {
        "name": "vicuna-13b-hf",  # "name"修改为fastchat服务中的"model_name"
        "pretrained_model_name": "vicuna-13b-hf",
        "local_model_path": None,
        "provides": "FastChatOpenAILLMChain",  # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
        "api_base_url": "http://localhost:8000/v1",  # "name"修改为fastchat服务中的"api_base_url"
        "api_key": "EMPTY"
    },

      "fastchat-baichuan2-7b-chat": {
        "name": "Baichuan2-7B-chat",  # "name"修改为fastchat服务中的"model_name"
        "pretrained_model_name": "Baichuan2-7B-chat",
        "local_model_path": None,
        "provides": "FastChatOpenAILLMChain",  # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
        "api_base_url": "http://localhost:8000/v1",  # "name"修改为fastchat服务中的"api_base_url"
        "api_key": "EMPTY"
    },
    # 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
    #  Max retries exceeded with url: /v1/chat/completions
    # 则需要将urllib3版本修改为1.25.11
    # 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
    # 参考https://zhuanlan.zhihu.com/p/350015032

    # 如果报出:raise NewConnectionError(
    # urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
    # Failed to establish a new connection: [WinError 10060]
    # 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
    "openai-chatgpt-3.5": {
        "name": "gpt-3.5-turbo",
        "pretrained_model_name": "gpt-3.5-turbo",
        "provides": "FastChatOpenAILLMChain",
        "local_model_path": None,
        "api_base_url": "https://openai.api2d.net/v1",
        "api_key": "fk216618-f39L8P2msSmhydRuG51oDh1aDG0CklUV"
    },

}

# LLM 名称
LLM_MODEL = "openai-chatgpt-3.5"
# 量化加载8bit 模型
LOAD_IN_8BIT = False
# Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.
BF16 = False
# 本地lora存放的位置
LORA_DIR = "loras/"

# LORA的名称,如有请指定为列表

LORA_NAME = ""
USE_LORA = True if LORA_NAME else False

# LLM streaming reponse
STREAMING = True

# 直接定义baichuan的lora完整路径即可
LORA_MODEL_PATH_BAICHUAN=""

# Use p-tuning-v2 PrefixEncoder
USE_PTUNING_V2 = False
PTUNING_DIR='./ptuning-v2'
# LLM running device
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

# 知识库默认存储路径
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")

# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
PROMPT_TEMPLATE = """已知信息:
{context} 

你将作为一个python助教, 服务于大学一年级的python基础课堂, 请你根据上述已知信息,简洁和专业的来回答学生们的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文,如果不清晰的可以使用带注释的代码解释。 问题是:{question}"""

# 缓存知识库数量,如果是ChatGLM2,ChatGLM2-int4,ChatGLM2-int8模型若检索效果不好可以调成’10’
CACHED_VS_NUM = 2

# 文本分句长度
SENTENCE_SIZE = 130

# 匹配后单段上下文长度s
CHUNK_SIZE = 350

# 传入LLM的历史记录长度
LLM_HISTORY_LEN = 3

# 知识库检索时返回的匹配内容条数
VECTOR_SEARCH_TOP_K = 2

# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,建议设置为500左右,经测试设置为小于500时,匹配结果更精准
VECTOR_SEARCH_SCORE_THRESHOLD = 500

NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")

# FLAG_USER_NAME = uuid.uuid4().hex
FLAG_USER_NAME = "王思源"

logger.info(f"""
loading model config
llm device: {LLM_DEVICE}
embedding device: {EMBEDDING_DEVICE}
dir: {os.path.dirname(os.path.dirname(__file__))}
flagging username: {FLAG_USER_NAME}     
""")

# 是否开启跨域,默认为False,如果需要开启,请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False

# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key,

# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
BING_SUBSCRIPTION_KEY = ""

# 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
ZH_TITLE_ENHANCE = True