File size: 18,411 Bytes
9551276
43465d8
3be135a
f8a1e6f
b60450b
 
6de36d2
5e72808
 
 
0db7793
 
 
1ea872a
 
5977160
 
 
 
 
 
 
 
14f07e7
 
 
 
2bcefc7
3be135a
14f07e7
 
 
5e72808
3be135a
07634db
0db7793
5e72808
2bcefc7
110c323
 
 
 
bb25d5e
5e72808
 
 
 
 
 
e42b84a
5d31a12
 
 
5e72808
 
 
1ea872a
0db7793
5d2df50
 
 
1ea872a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2df50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d3e15
5d2df50
 
 
 
 
 
 
 
0db7793
5d2df50
02d3e15
0db7793
9c426e3
91446f2
0db7793
 
 
 
 
02d3e15
5d2df50
 
 
 
 
 
 
 
0db7793
5d2df50
02d3e15
0db7793
9c426e3
0db7793
 
 
 
 
1b66d6b
 
dc61e08
c64d9b7
 
b6d6c4d
1b66d6b
0744c88
 
c64d9b7
 
01e3144
c64d9b7
 
 
 
 
 
b6d6c4d
 
0744c88
c64d9b7
0c44b2e
c64d9b7
 
0c44b2e
5fcc8ca
c64d9b7
1b66d6b
 
 
dc61e08
02d3e15
b60450b
 
1b66d6b
b60450b
 
dc61e08
b6d6c4d
32c3c9e
1b66d6b
 
02d3e15
1b66d6b
 
 
 
 
 
15561fc
 
b6d6c4d
df9a14a
b6d6c4d
481eae2
8c9701f
 
dc9503c
2fa0b5a
6de36d2
dc61e08
9c426e3
6de36d2
c64d9b7
02d3e15
 
 
 
 
 
c64d9b7
 
02d3e15
 
 
 
f65c37f
6de36d2
dc61e08
6de36d2
9b5d20f
01b0555
1b66d6b
6d8a68e
8c03956
c2220a0
 
 
 
 
 
 
 
 
 
 
 
e22d774
 
c2220a0
8c03956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f442e
 
 
8c03956
 
 
c2220a0
e22d774
c2220a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import os
import subprocess
import random
import numpy as np
import json
from datetime import timedelta
import tempfile
import gradio as gr
from groq import Groq

client = Groq(api_key=os.environ.get("Groq_Api_Key"))


# llms

MAX_SEED = np.iinfo(np.int32).max

def update_max_tokens(model):
    if model in ["llama3-70b-8192", "llama3-8b-8192", "gemma-7b-it", "gemma2-9b-it"]:
        return gr.update(maximum=8192)
    elif model == "mixtral-8x7b-32768":
        return gr.update(maximum=32768)

def create_history_messages(history):
    history_messages = [{"role": "user", "content": m[0]} for m in history]
    history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
    return history_messages

def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
    messages = create_history_messages(history)
    messages.append({"role": "user", "content": prompt})
    print(messages)

    if seed == 0:
        seed = random.randint(1, MAX_SEED)

    stream = client.chat.completions.create(
        messages=messages,
        model=model,
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=top_p,
        seed=seed,
        stop=None,
        stream=True,
    )

    response = ""
    for chunk in stream:
        delta_content = chunk.choices[0].delta.content
        if delta_content is not None:
            response += delta_content
            yield response

    return response

# speech to text

ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
MAX_FILE_SIZE_MB = 25

LANGUAGE_CODES = {
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Māori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Panjabi": "pa",
    "Sinhala": "si",
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Norwegian Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "jw": "jw",
    "Sundanese": "su",
}

# Checks file extension, size, and downsamples if needed.
def check_file(audio_file_path):
    if not audio_file_path:
        return None, gr.Error("Please upload an audio file.")

    file_size_mb = os.path.getsize(audio_file_path) / (1024 * 1024)
    file_extension = audio_file_path.split(".")[-1].lower()

    if file_extension not in ALLOWED_FILE_EXTENSIONS:
        return (
            None,
            gr.Error(
                f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}"
            ),
        )

    if file_size_mb > MAX_FILE_SIZE_MB:
        gr.Warning(
            f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz. Maximum allowed: {MAX_FILE_SIZE_MB} MB"
        )

        output_file_path = os.path.splitext(audio_file_path)[0] + "_downsampled.wav"
        try:
            subprocess.run(
                [
                    "ffmpeg",
                    "-i",
                    audio_file_path,
                    "-ar",
                    "16000",
                    "-ac",
                    "1",
                    "-map",
                    "0:a:",
                    output_file_path,
                ],
                check=True,
            )

            # Check size after downsampling
            downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
            if downsampled_size_mb > MAX_FILE_SIZE_MB:
                return (
                    None,
                    gr.Error(
                        f"File size still too large after downsampling ({downsampled_size_mb:.2f} MB). Maximum allowed: {MAX_FILE_SIZE_MB} MB"
                    ),
                )

            return output_file_path, None
        except subprocess.CalledProcessError as e:
            return None, gr.Error(f"Error during downsampling: {e}")
    return audio_file_path, None


def transcribe_audio(audio_file_path, prompt, language, auto_detect_language, model):
    # Check and process the file first
    processed_path, error_message = check_file(audio_file_path)

    # If there's an error during file check
    if error_message:
        return error_message

    with open(processed_path, "rb") as file:
        transcription = client.audio.transcriptions.create(
            file=(os.path.basename(processed_path), file.read()),
            model=model,
            prompt=prompt,
            response_format="text",
            language=None if auto_detect_language else language,
            temperature=0.0,
        )
    return transcription.text


def translate_audio(audio_file_path, prompt, model):
    # Check and process the file first
    processed_path, error_message = check_file(audio_file_path)

    # If there's an error during file check
    if error_message:
        return error_message

    with open(processed_path, "rb") as file:
        translation = client.audio.translations.create(
            file=(os.path.basename(processed_path), file.read()),
            model=model,
            prompt=prompt,
            response_format="text",
            temperature=0.0,
        )
    return translation.text


# subtitles maker

# helper function convert json transcription to srt
from datetime import timedelta

def create_srt_from_text(transcription_text):
    srt_lines = []
    start_time = timedelta(seconds=0)

    # Define a function to calculate the duration based on text length
    def calculate_duration(text):
        words_per_minute = 110
        words = len(text.split())
        duration_seconds = (words / words_per_minute) * 60
        return timedelta(seconds=duration_seconds)

    text_parts = transcription_text.split(".")
    
    for i, text_part in enumerate(text_parts):
        text_part = text_part.strip()
        if text_part:
            duration = calculate_duration(text_part)
            end_time = start_time + duration
            start_timestamp = str(start_time).split('.')[0] + ',' + str(start_time.microseconds // 1000).zfill(3)
            end_timestamp = str(end_time).split('.')[0] + ',' + str(end_time.microseconds // 1000).zfill(3)
            srt_lines.append(f"{i + 1}\n{start_timestamp} --> {end_timestamp}\n{text_part.strip()}\n\n")
            start_time = end_time  # Move to the next time slot
    
    return "".join(srt_lines)


# getting transcription + using helper function + adding subs to video if input is video
def generate_subtitles(audio_file_path, prompt, language, auto_detect_language, model):
    # Check and process the file first
    processed_path, error_message = check_file(audio_file_path)

    # If there's an error during file check
    if error_message:
        return error_message, None, None

    with open(processed_path, "rb") as file:
        transcription_json = client.audio.transcriptions.create(
            file=(os.path.basename(processed_path), file.read()),
            model=model,
            prompt=prompt,
            response_format="json",
            language=None if auto_detect_language else language,  # Conditional language parameter
            temperature=0.0,
        )

    # Convert the Transcription object to a dictionary
    transcription_json = json.loads(transcription_json.to_json())
    transcription_text = transcription_json['text']

    srt_content = create_srt_from_text(transcription_text)

    # Create a temporary file for SRT content    
    with tempfile.NamedTemporaryFile(mode="w", suffix=".srt", delete=False) as temp_srt_file:
        temp_srt_path = temp_srt_file.name
        temp_srt_file.write(srt_content)

    # Generate subtitles and add to video if input is video
    if audio_file_path.lower().endswith((".amp4", ".awebm")):
        try:
            # Use ffmpeg to burn subtitles into the video
            output_file_path = audio_file_path.replace(os.path.splitext(audio_file_path)[1], "_with_subs" + os.path.splitext(audio_file_path)[1])
            subprocess.run(
                [
                    "ffmpeg",
                    "-i",
                    audio_file_path,
                    "-vf",
                    f"subtitles={temp_srt_path}",
                    output_file_path,
                ],
                check=True,
            )
            return temp_srt_path, output_file_path, None
        except subprocess.CalledProcessError as e:
            return None, None, gr.Error(f"Error during subtitle addition: {e}")

    return temp_srt_path, None, None 
    




with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Groq API UI
    Inference by Groq
    Hugging Face Space by [Nick088](https://linktr.ee/Nick088)
    """
    )
    with gr.Tabs():
        with gr.TabItem("select option here:"):
            with gr.Tabs():
                with gr.TabItem("Speech To Text"):
                    gr.Markdown("Speech to Text coming soon!")
                with gr.TabItem("LLMs"):
                    with gr.Column():
                        model = gr.Dropdown(
                            choices=[
                                "llama3-70b-8192",
                                "llama3-8b-8192",
                                "mixtral-8x7b-32768",
                                "gemma-7b-it",
                                "gemma2-9b-it",
                            ],
                            value="llama3-70b-8192",
                            label="Model",
                        )
                        temperature = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            step=0.01,
                            value=0.5,
                            label="Temperature",
                            info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative.",
                        )
                        max_tokens = gr.Slider(
                            minimum=1,
                            maximum=8192,
                            step=1,
                            value=4096,
                            label="Max Tokens",
                            info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b.",
                        )
                        top_p = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            step=0.01,
                            value=0.5,
                            label="Top P",
                            info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p.",
                        )
                        seed = gr.Number(
                            precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random"
                        )
                        model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
                        chatbot = gr.ChatInterface(
                            fn=generate_response,                                         
                            chatbot=None,
                            additional_inputs=[
                                model,                       
                                temperature,
                                max_tokens,
                                top_p,
                                seed,  
                            ],
                        )
                        model.change(update_max_tokens, inputs=[model], outputs=max_tokens)

                
                with gr.TabItem("Transcription"):
                    gr.Markdown("Transcript audio from files to text!")
                    with gr.Column():
                        audio_input = gr.File(
                            type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
                        )
                        model_choice_transcribe = gr.Dropdown(
                            choices=["whisper-large-v3"],  # Only include 'whisper-large-v3'
                            value="whisper-large-v3",
                            label="Model",
                        )
                        transcribe_prompt = gr.Textbox(
                            label="Prompt (Optional)",
                            info="Specify any context or spelling corrections.",
                        )
                        language = gr.Dropdown(
                             choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()],
                             value="en",
                             label="Language",
                        )
                        auto_detect_language = gr.Checkbox(label="Auto Detect Language")
                        transcribe_button = gr.Button("Transcribe")
                    transcription_output = gr.Textbox(label="Transcription")
                    transcribe_button.click(
                        transcribe_audio,
                        inputs=[audio_input, transcribe_prompt, language, auto_detect_language, model_choice_transcribe],
                        outputs=transcription_output,
                    )
                with gr.TabItem("Translation"):
                    gr.Markdown("Transcript audio from files and translate them to English text!")
                    with gr.Column():
                        audio_input_translate = gr.File(
                            type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
                        )
                        model_choice_translate = gr.Dropdown(
                            choices=["whisper-large-v3"],  # Only include 'whisper-large-v3'
                            value="whisper-large-v3",
                            label="Model",
                        )
                        translate_prompt = gr.Textbox(
                            label="Prompt (Optional)",
                            info="Specify any context or spelling corrections.",
                        )
                        translate_button = gr.Button("Translate")
                    translation_output = gr.Textbox(label="Translation")
                    translate_button.click(
                        translate_audio,
                        inputs=[audio_input_translate, translate_prompt, model_choice_translate],
                        outputs=translation_output,
                    )
                with gr.TabItem("Subtitle Maker"):
                    with gr.Column():
                        audio_input_subtitles = gr.File(
                            label="Upload Audio/Video",
                            file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS],
                        )
                        model_choice_subtitles = gr.Dropdown(
                            choices=["whisper-large-v3"],  # Only include 'whisper-large-v3'
                            value="whisper-large-v3",
                            label="Model",
                        )
                        transcribe_prompt_subtitles = gr.Textbox(
                            label="Prompt (Optional)",
                            info="Specify any context or spelling corrections.",
                        )
                        language_subtitles = gr.Dropdown(
                            choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()],
                            value="en",
                            label="Language",
                        )
                        auto_detect_language_subtitles = gr.Checkbox(
                            label="Auto Detect Language"
                        )
                        transcribe_button_subtitles = gr.Button("Generate Subtitles")
                        srt_output = gr.File(label="SRT Output File")
                        video_output = gr.File(label="Output Video with Subtitles")
                        transcribe_button_subtitles.click(
                            generate_subtitles,
                            inputs=[
                                audio_input_subtitles,
                                transcribe_prompt_subtitles,
                                language_subtitles,
                                auto_detect_language_subtitles,
                                model_choice_subtitles,
                            ],
                            outputs=[srt_output, video_output, gr.Textbox(label="Error")]
                        )
                
demo.launch()