Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import plotly.graph_objects as go
|
|
6 |
from plotly.subplots import make_subplots
|
7 |
from scipy.optimize import minimize
|
8 |
import plotly.express as px
|
9 |
-
from scipy.stats import t
|
10 |
import gradio as gr
|
11 |
|
12 |
class RSM_BoxBehnken:
|
@@ -25,8 +25,6 @@ class RSM_BoxBehnken:
|
|
25 |
x3_levels (list): Niveles de la tercera variable independiente.
|
26 |
"""
|
27 |
self.data = data.copy()
|
28 |
-
# Ya no es necesario renombrar las columnas aqu铆, se har谩 al cargar los datos
|
29 |
-
|
30 |
self.model = None
|
31 |
self.model_simplified = None
|
32 |
self.optimized_results = None
|
@@ -71,7 +69,7 @@ class RSM_BoxBehnken:
|
|
71 |
self.model = smf.ols(formula, data=self.data).fit()
|
72 |
print("Modelo Completo:")
|
73 |
print(self.model.summary())
|
74 |
-
return self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
75 |
|
76 |
def fit_simplified_model(self):
|
77 |
"""
|
@@ -82,7 +80,7 @@ class RSM_BoxBehnken:
|
|
82 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
83 |
print("\nModelo Simplificado:")
|
84 |
print(self.model_simplified.summary())
|
85 |
-
return self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
86 |
|
87 |
def optimize(self, method='Nelder-Mead'):
|
88 |
"""
|
@@ -110,12 +108,14 @@ class RSM_BoxBehnken:
|
|
110 |
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
111 |
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
112 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
print(f"{self.x1_name}: {optimal_levels_natural[0]:.4f} g/L")
|
116 |
-
print(f"{self.x2_name}: {optimal_levels_natural[1]:.4f} g/L")
|
117 |
-
print(f"{self.x3_name}: {optimal_levels_natural[2]:.4f} g/L")
|
118 |
-
print(f"Valor m谩ximo de {self.y_name}: {-self.optimized_results.fun:.4f}")
|
119 |
|
120 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
121 |
"""
|
@@ -311,6 +311,167 @@ class RSM_BoxBehnken:
|
|
311 |
|
312 |
return fig
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
# --- Funciones para la interfaz de Gradio ---
|
315 |
|
316 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
@@ -357,14 +518,22 @@ def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x
|
|
357 |
|
358 |
def fit_and_optimize_model():
|
359 |
if 'rsm' not in globals():
|
360 |
-
return None, None, "Error: Carga los datos primero."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
|
367 |
-
return
|
368 |
|
369 |
def generate_rsm_plot(fixed_variable, fixed_level):
|
370 |
if 'rsm' not in globals():
|
@@ -413,13 +582,20 @@ with gr.Blocks() as demo:
|
|
413 |
with gr.Row(visible=False) as analysis_row:
|
414 |
with gr.Column():
|
415 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
with gr.Column():
|
421 |
gr.Markdown("## Generar Gr谩ficos de Superficie de Respuesta")
|
422 |
-
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "
|
423 |
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
424 |
plot_button = gr.Button("Generar Gr谩fico")
|
425 |
rsm_plot_output = gr.Plot()
|
|
|
6 |
from plotly.subplots import make_subplots
|
7 |
from scipy.optimize import minimize
|
8 |
import plotly.express as px
|
9 |
+
from scipy.stats import t, f
|
10 |
import gradio as gr
|
11 |
|
12 |
class RSM_BoxBehnken:
|
|
|
25 |
x3_levels (list): Niveles de la tercera variable independiente.
|
26 |
"""
|
27 |
self.data = data.copy()
|
|
|
|
|
28 |
self.model = None
|
29 |
self.model_simplified = None
|
30 |
self.optimized_results = None
|
|
|
69 |
self.model = smf.ols(formula, data=self.data).fit()
|
70 |
print("Modelo Completo:")
|
71 |
print(self.model.summary())
|
72 |
+
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
73 |
|
74 |
def fit_simplified_model(self):
|
75 |
"""
|
|
|
80 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
81 |
print("\nModelo Simplificado:")
|
82 |
print(self.model_simplified.summary())
|
83 |
+
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
84 |
|
85 |
def optimize(self, method='Nelder-Mead'):
|
86 |
"""
|
|
|
108 |
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
109 |
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
110 |
]
|
111 |
+
# Crear la tabla de optimizaci贸n
|
112 |
+
optimization_table = pd.DataFrame({
|
113 |
+
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
114 |
+
'Nivel 脫ptimo (Natural)': optimal_levels_natural,
|
115 |
+
'Nivel 脫ptimo (Codificado)': self.optimal_levels
|
116 |
+
})
|
117 |
|
118 |
+
return optimization_table
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
121 |
"""
|
|
|
311 |
|
312 |
return fig
|
313 |
|
314 |
+
def get_simplified_equation(self):
|
315 |
+
"""
|
316 |
+
Imprime la ecuaci贸n del modelo simplificado.
|
317 |
+
"""
|
318 |
+
if self.model_simplified is None:
|
319 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
320 |
+
return None
|
321 |
+
|
322 |
+
coefficients = self.model_simplified.params
|
323 |
+
equation = f"{self.y_name} = {coefficients['Intercept']:.4f}"
|
324 |
+
|
325 |
+
for term, coef in coefficients.items():
|
326 |
+
if term != 'Intercept':
|
327 |
+
if term == f'{self.x1_name}':
|
328 |
+
equation += f" + {coef:.4f}*{self.x1_name}"
|
329 |
+
elif term == f'{self.x2_name}':
|
330 |
+
equation += f" + {coef:.4f}*{self.x2_name}"
|
331 |
+
elif term == f'{self.x3_name}':
|
332 |
+
equation += f" + {coef:.4f}*{self.x3_name}"
|
333 |
+
elif term == f'I({self.x1_name} ** 2)':
|
334 |
+
equation += f" + {coef:.4f}*{self.x1_name}^2"
|
335 |
+
elif term == f'I({self.x2_name} ** 2)':
|
336 |
+
equation += f" + {coef:.4f}*{self.x2_name}^2"
|
337 |
+
elif term == f'I({self.x3_name} ** 2)':
|
338 |
+
equation += f" + {coef:.4f}*{self.x3_name}^2"
|
339 |
+
|
340 |
+
return equation
|
341 |
+
|
342 |
+
def generate_prediction_table(self):
|
343 |
+
"""
|
344 |
+
Genera una tabla con los valores actuales, predichos y residuales.
|
345 |
+
"""
|
346 |
+
if self.model_simplified is None:
|
347 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
348 |
+
return None
|
349 |
+
|
350 |
+
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
351 |
+
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
352 |
+
|
353 |
+
return self.data[[self.y_name, 'Predicho', 'Residual']]
|
354 |
+
|
355 |
+
def calculate_contribution_percentage(self):
|
356 |
+
"""
|
357 |
+
Calcula el porcentaje de contribuci贸n de cada factor a la variabilidad de la respuesta (AIA).
|
358 |
+
"""
|
359 |
+
if self.model_simplified is None:
|
360 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
361 |
+
return None
|
362 |
+
|
363 |
+
# ANOVA del modelo simplificado
|
364 |
+
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
365 |
+
|
366 |
+
# Suma de cuadrados total
|
367 |
+
ss_total = anova_table['sum_sq'].sum()
|
368 |
+
|
369 |
+
# Crear tabla de contribuci贸n
|
370 |
+
contribution_table = pd.DataFrame({
|
371 |
+
'Factor': [],
|
372 |
+
'Suma de Cuadrados': [],
|
373 |
+
'% Contribuci贸n': []
|
374 |
+
})
|
375 |
+
|
376 |
+
# Calcular porcentaje de contribuci贸n para cada factor
|
377 |
+
for index, row in anova_table.iterrows():
|
378 |
+
if index != 'Residual':
|
379 |
+
factor_name = index
|
380 |
+
if factor_name == f'I({self.x1_name} ** 2)':
|
381 |
+
factor_name = f'{self.x1_name}^2'
|
382 |
+
elif factor_name == f'I({self.x2_name} ** 2)':
|
383 |
+
factor_name = f'{self.x2_name}^2'
|
384 |
+
elif factor_name == f'I({self.x3_name} ** 2)':
|
385 |
+
factor_name = f'{self.x3_name}^2'
|
386 |
+
|
387 |
+
ss_factor = row['sum_sq']
|
388 |
+
contribution_percentage = (ss_factor / ss_total) * 100
|
389 |
+
|
390 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
391 |
+
'Factor': [factor_name],
|
392 |
+
'Suma de Cuadrados': [ss_factor],
|
393 |
+
'% Contribuci贸n': [contribution_percentage]
|
394 |
+
})], ignore_index=True)
|
395 |
+
|
396 |
+
return contribution_table
|
397 |
+
|
398 |
+
def calculate_detailed_anova(self):
|
399 |
+
"""
|
400 |
+
Calcula la tabla ANOVA detallada con la descomposici贸n del error residual.
|
401 |
+
"""
|
402 |
+
if self.model_simplified is None:
|
403 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
404 |
+
return None
|
405 |
+
|
406 |
+
# --- ANOVA detallada ---
|
407 |
+
# 1. Ajustar un modelo solo con los t茅rminos de primer orden y cuadr谩ticos
|
408 |
+
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
409 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
410 |
+
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
411 |
+
|
412 |
+
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresi贸n)
|
413 |
+
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
414 |
+
|
415 |
+
# 3. Suma de cuadrados total
|
416 |
+
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
417 |
+
|
418 |
+
# 4. Grados de libertad totales
|
419 |
+
df_total = len(self.data) - 1
|
420 |
+
|
421 |
+
# 5. Suma de cuadrados de la regresi贸n
|
422 |
+
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
|
423 |
+
|
424 |
+
# 6. Grados de libertad de la regresi贸n
|
425 |
+
df_regression = len(anova_reduced) - 1
|
426 |
+
|
427 |
+
# 7. Suma de cuadrados del error residual
|
428 |
+
ss_residual = self.model_simplified.ssr
|
429 |
+
df_residual = self.model_simplified.df_resid
|
430 |
+
|
431 |
+
# 8. Suma de cuadrados del error puro (se calcula a partir de las r茅plicas)
|
432 |
+
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
433 |
+
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
434 |
+
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
435 |
+
|
436 |
+
# 9. Suma de cuadrados de la falta de ajuste
|
437 |
+
ss_lack_of_fit = ss_residual - ss_pure_error
|
438 |
+
df_lack_of_fit = df_residual - df_pure_error
|
439 |
+
|
440 |
+
# 10. Cuadrados medios
|
441 |
+
ms_regression = ss_regression / df_regression
|
442 |
+
ms_residual = ss_residual / df_residual
|
443 |
+
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
444 |
+
ms_pure_error = ss_pure_error / df_pure_error
|
445 |
+
|
446 |
+
# 11. Estad铆stico F y valor p para la falta de ajuste
|
447 |
+
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
448 |
+
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) # Usar f.cdf de scipy.stats
|
449 |
+
|
450 |
+
# 12. Crear la tabla ANOVA detallada
|
451 |
+
detailed_anova_table = pd.DataFrame({
|
452 |
+
'Fuente de Variaci贸n': ['Regresi贸n', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
453 |
+
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
|
454 |
+
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
455 |
+
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
|
456 |
+
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
|
457 |
+
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
|
458 |
+
})
|
459 |
+
|
460 |
+
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
461 |
+
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
462 |
+
df_curvature = 3
|
463 |
+
|
464 |
+
# A帽adir la fila de curvatura a la tabla ANOVA
|
465 |
+
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
|
466 |
+
|
467 |
+
# Reorganizar las filas para que la curvatura aparezca despu茅s de la regresi贸n
|
468 |
+
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
469 |
+
|
470 |
+
# Resetear el 铆ndice para que sea consecutivo
|
471 |
+
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
472 |
+
|
473 |
+
return detailed_anova_table
|
474 |
+
|
475 |
# --- Funciones para la interfaz de Gradio ---
|
476 |
|
477 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
|
|
518 |
|
519 |
def fit_and_optimize_model():
|
520 |
if 'rsm' not in globals():
|
521 |
+
return None, None, None, None, None, None, "Error: Carga los datos primero."
|
522 |
+
|
523 |
+
model_completo, pareto_completo = rsm.fit_model()
|
524 |
+
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
525 |
+
optimization_table = rsm.optimize()
|
526 |
+
equation = rsm.get_simplified_equation()
|
527 |
+
prediction_table = rsm.generate_prediction_table()
|
528 |
+
contribution_table = rsm.calculate_contribution_percentage()
|
529 |
+
anova_table = rsm.calculate_detailed_anova()
|
530 |
|
531 |
+
# Formatear la ecuaci贸n para que se vea mejor en Markdown
|
532 |
+
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " 脳 ")
|
533 |
+
equation_formatted = f"### Ecuaci贸n del Modelo Simplificado:<br>{equation_formatted}"
|
534 |
+
|
535 |
|
536 |
+
return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table
|
537 |
|
538 |
def generate_rsm_plot(fixed_variable, fixed_level):
|
539 |
if 'rsm' not in globals():
|
|
|
582 |
with gr.Row(visible=False) as analysis_row:
|
583 |
with gr.Column():
|
584 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
585 |
+
gr.Markdown("**Modelo Completo**")
|
586 |
+
model_completo_output = gr.HTML()
|
587 |
+
pareto_completo_output = gr.Plot()
|
588 |
+
gr.Markdown("**Modelo Simplificado**")
|
589 |
+
model_simplificado_output = gr.HTML()
|
590 |
+
pareto_simplificado_output = gr.Plot()
|
591 |
+
equation_output = gr.HTML()
|
592 |
+
optimization_table_output = gr.Dataframe(label="Tabla de Optimizaci贸n")
|
593 |
+
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
594 |
+
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribuci贸n")
|
595 |
+
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
596 |
with gr.Column():
|
597 |
gr.Markdown("## Generar Gr谩ficos de Superficie de Respuesta")
|
598 |
+
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
599 |
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
600 |
plot_button = gr.Button("Generar Gr谩fico")
|
601 |
rsm_plot_output = gr.Plot()
|