import numpy as np import pandas as pd import statsmodels.formula.api as smf import statsmodels.api as sm import plotly.graph_objects as go from plotly.subplots import make_subplots from scipy.optimize import minimize import plotly.express as px from scipy.stats import t, f import gradio as gr import io import os from zipfile import ZipFile import warnings # Suppress specific warnings warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=RuntimeWarning) class RSM_BoxBehnken: def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels): """ Initialize the Response Surface Methodology Box-Behnken Design class Parameters: ----------- data : pandas.DataFrame Experimental design data x1_name, x2_name, x3_name : str Names of independent variables y_name : str Name of dependent variable x1_levels, x2_levels, x3_levels : list Levels of each independent variable """ self.data = data.copy() self.model = None self.model_simplified = None self.optimized_results = None self.optimal_levels = None # Variable names self.x1_name = x1_name self.x2_name = x2_name self.x3_name = x3_name self.y_name = y_name # Original levels of variables self.x1_levels = x1_levels self.x2_levels = x2_levels self.x3_levels = x3_levels def _get_levels(self, variable_name): """ Get levels for a specific variable Parameters: ----------- variable_name : str Name of the variable Returns: -------- list Levels of the variable """ level_map = { self.x1_name: self.x1_levels, self.x2_name: self.x2_levels, self.x3_name: self.x3_levels } if variable_name not in level_map: raise ValueError(f"Unknown variable: {variable_name}") return level_map[variable_name] def fit_model(self, simplified=False): """ Fit the response surface model Parameters: ----------- simplified : bool, optional Whether to fit a simplified model, by default False Returns: -------- tuple Fitted model and Pareto chart """ if simplified: formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \ f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' self.model_simplified = smf.ols(formula, data=self.data).fit() print("\nSimplified Model:") print(self.model_simplified.summary()) return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Simplified Model") else: formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \ f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \ f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}' self.model = smf.ols(formula, data=self.data).fit() print("Full Model:") print(self.model.summary()) return self.model, self.pareto_chart(self.model, "Pareto - Full Model") def optimize(self, method='Nelder-Mead'): """ Optimize the response surface model Parameters: ----------- method : str, optional Optimization method, by default 'Nelder-Mead' Returns: -------- pandas.DataFrame Optimization results table """ if self.model_simplified is None: raise ValueError("Fit the simplified model first.") def objective_function(x): """Objective function for optimization""" return -self.model_simplified.predict(pd.DataFrame({ self.x1_name: [x[0]], self.x2_name: [x[1]], self.x3_name: [x[2]] })) bounds = [(-1, 1), (-1, 1), (-1, 1)] x0 = [0, 0, 0] self.optimized_results = minimize( objective_function, x0, method=method, bounds=bounds ) self.optimal_levels = self.optimized_results.x # Convert to natural levels optimal_levels_natural = [ round(self.coded_to_natural(self.optimal_levels[i], var), 3) for i, var in enumerate([self.x1_name, self.x2_name, self.x3_name]) ] optimization_table = pd.DataFrame({ 'Variable': [self.x1_name, self.x2_name, self.x3_name], 'Optimal Level (Natural)': optimal_levels_natural, 'Optimal Level (Coded)': [round(x, 3) for x in self.optimal_levels] }) return optimization_table def coded_to_natural(self, coded_value, variable_name): """ Convert coded value to natural level Parameters: ----------- coded_value : float Coded value of the variable variable_name : str Name of the variable Returns: -------- float Natural level of the variable """ levels = self._get_levels(variable_name) return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2 def natural_to_coded(self, natural_value, variable_name): """ Convert natural level to coded value Parameters: ----------- natural_value : float Natural level of the variable variable_name : str Name of the variable Returns: -------- float Coded value of the variable """ levels = self._get_levels(variable_name) return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0]) def pareto_chart(self, model, title): """ Create Pareto chart of standardized effects Parameters: ----------- model : statsmodels.regression.linear_model.RegressionResultsWrapper Fitted regression model title : str Title of the Pareto chart Returns: -------- plotly.graph_objects.Figure Pareto chart """ tvalues = model.tvalues[1:] abs_tvalues = np.abs(tvalues) sorted_idx = np.argsort(abs_tvalues)[::-1] sorted_tvalues = abs_tvalues[sorted_idx] sorted_names = tvalues.index[sorted_idx] alpha = 0.05 dof = model.df_resid t_critical = t.ppf(1 - alpha / 2, dof) fig = px.bar( x=sorted_tvalues, y=sorted_names, orientation='h', labels={'x': 'Standardized Effect', 'y': 'Term'}, title=title ) fig.update_yaxes(autorange="reversed") fig.add_vline(x=t_critical, line_dash="dot", annotation_text=f"Critical t = {t_critical:.2f}", annotation_position="bottom right") return fig def generate_prediction_table(self): """ Generate prediction table with predicted and residual values Returns: -------- pandas.DataFrame Prediction table """ if self.model_simplified is None: raise ValueError("Fit the simplified model first.") predictions = self.model_simplified.predict(self.data) residuals = self.data[self.y_name] - predictions prediction_table = self.data.copy() prediction_table['Predicted'] = predictions.round(3) prediction_table['Residual'] = residuals.round(3) return prediction_table[[self.y_name, 'Predicted', 'Residual']] def calculate_contribution_percentage(self): """ Calculate percentage contribution of model terms Returns: -------- pandas.DataFrame Contribution percentage table """ if self.model_simplified is None: raise ValueError("Fit the simplified model first.") anova_table = sm.stats.anova_lm(self.model_simplified, typ=2) ss_total = anova_table['sum_sq'].sum() contribution_table = [] for index, row in anova_table.iterrows(): if index != 'Residual': factor_name = index.replace('I(', '').replace('**2)', '^2') ss_factor = row['sum_sq'] contribution_percentage = (ss_factor / ss_total) * 100 contribution_table.append({ 'Factor': factor_name, 'Sum of Squares': round(ss_factor, 3), '% Contribution': round(contribution_percentage, 3) }) return pd.DataFrame(contribution_table) def calculate_detailed_anova(self): """ Perform detailed ANOVA analysis Returns: -------- pandas.DataFrame Detailed ANOVA table """ if self.model_simplified is None: raise ValueError("Fit the simplified model first.") # Preparar datos para ANOVA detallado ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2) df_total = len(self.data) - 1 # ANOVA para modelo reducido formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \ f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' model_reduced = smf.ols(formula_reduced, data=self.data).fit() anova_reduced = sm.stats.anova_lm(model_reduced, typ=2) # Calcular componentes de variación ss_regression = anova_reduced['sum_sq'][:-1].sum() df_regression = len(anova_reduced) - 1 ss_residual = self.model_simplified.ssr df_residual = self.model_simplified.df_resid # Error puro replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)] ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name])) # Falta de ajuste ss_lack_of_fit = ss_residual - ss_pure_error df_lack_of_fit = df_residual - df_pure_error # Calcular cuadrados medios y estadísticos F ms_regression = ss_regression / df_regression ms_residual = ss_residual / df_residual ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit ms_pure_error = ss_pure_error / df_pure_error f_lack_of_fit = ms_lack_of_fit / ms_pure_error p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) # Crear tabla de ANOVA detallada detailed_anova_table = pd.DataFrame({ 'Source of Variation': ['Regression', 'Residual', 'Lack of Fit', 'Pure Error', 'Total'], 'Sum of Squares': [ round(ss_regression, 3), round(ss_residual, 3), round(ss_lack_of_fit, 3), round(ss_pure_error, 3), round(ss_total, 3) ], 'Degrees of Freedom': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total], 'Mean Square': [ round(ms_regression, 3), round(ms_residual, 3), round(ms_lack_of_fit, 3), round(ms_pure_error, 3), np.nan ], 'F': [np.nan, np.nan, round(f_lack_of_fit, 3), np.nan, np.nan], 'p-value': [np.nan, np.nan, round(p_lack_of_fit, 3), np.nan, np.nan] }) return detailed_anova_table # --- Funciones para la interfaz de Gradio --- def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str): try: x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')] x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')] x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')] data_list = [row.split(',') for row in data_str.strip().split('\n')] column_names = ['Exp.', x1_name, x2_name, x3_name, y_name] data = pd.DataFrame(data_list, columns=column_names) data = data.apply(pd.to_numeric, errors='coerce') if not all(col in data.columns for col in column_names): raise ValueError("El formato de los datos no es correcto.") global rsm rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels) return data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True) except Exception as e: return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}" def fit_and_optimize_model(): if 'rsm' not in globals(): return None, None, None, None, None, None, "Error: Carga los datos primero." model_completo, pareto_completo = rsm.fit_model() model_simplificado, pareto_simplificado = rsm.fit_simplified_model() optimization_table = rsm.optimize() equation = rsm.get_simplified_equation() prediction_table = rsm.generate_prediction_table() contribution_table = rsm.calculate_contribution_percentage() anova_table = rsm.calculate_detailed_anova() equation_formatted = equation.replace(" + ", "
+ ").replace(" ** ", "^").replace("*", " × ") equation_formatted = f"### Ecuación del Modelo Simplificado:
{equation_formatted}" return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table def generate_rsm_plot(fixed_variable, fixed_level): if 'rsm' not in globals(): return None, "Error: Carga los datos primero." # Generar todas las gráficas all_figs = rsm.generate_all_plots() # Crear una lista de figuras para la salida plot_outputs = [] for fig in all_figs: # Convertir la figura a una imagen en formato PNG img_bytes = fig.to_image(format="png") plot_outputs.append(img_bytes) # Retornar la lista de imágenes return plot_outputs def download_excel(): if 'rsm' not in globals(): return None, "Error: Carga los datos y ajusta el modelo primero." output = io.BytesIO() with pd.ExcelWriter(output, engine='xlsxwriter') as writer: rsm.data.to_excel(writer, sheet_name='Datos', index=False) rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False) rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False) rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False) rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False) output.seek(0) return gr.File.update(value=output, visible=True, filename="resultados_rsm.xlsx") def download_images(): if 'rsm' not in globals(): return None, "Error: Carga los datos y ajusta el modelo primero." # Crear un directorio temporal para guardar las imágenes temp_dir = "temp_images" os.makedirs(temp_dir, exist_ok=True) # Generar todas las gráficas y guardarlas como imágenes PNG all_figs = rsm.generate_all_plots() for i, fig in enumerate(all_figs): img_path = os.path.join(temp_dir, f"plot_{i}.png") fig.write_image(img_path) # Comprimir las imágenes en un archivo ZIP zip_buffer = io.BytesIO() with ZipFile(zip_buffer, "w") as zip_file: for filename in os.listdir(temp_dir): file_path = os.path.join(temp_dir, filename) zip_file.write(file_path, arcname=filename) # Eliminar el directorio temporal for filename in os.listdir(temp_dir): file_path = os.path.join(temp_dir, filename) os.remove(file_path) os.rmdir(temp_dir) zip_buffer.seek(0) return gr.File.update(value=zip_buffer, visible=True, filename="graficos_rsm.zip") # --- Crear la interfaz de Gradio --- with gr.Blocks() as demo: gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken") with gr.Row(): with gr.Column(): gr.Markdown("## Configuración del Diseño") x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa") x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura") x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Triptófano)", value="Triptofano") y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm") x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5") x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3") x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9") data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=5, value="""1,-1,-1,0,166.594 2,1,-1,0,177.557 3,-1,1,0,127.261 4,1,1,0,147.573 5,-1,0,-1,188.883 6,1,0,-1,224.527 7,-1,0,1,190.238 8,1,0,1,226.483 9,0,-1,-1,195.550 10,0,1,-1,149.493 11,0,-1,1,187.683 12,0,1,1,148.621 13,0,0,0,278.951 14,0,0,0,297.238 15,0,0,0,280.896""") load_button = gr.Button("Cargar Datos") with gr.Column(): gr.Markdown("## Datos Cargados") data_output = gr.Dataframe(label="Tabla de Datos") # Hacer que la sección de análisis sea visible solo después de cargar los datos with gr.Row(visible=False) as analysis_row: with gr.Column(): fit_button = gr.Button("Ajustar Modelo y Optimizar") download_excel_button = gr.Button("Descargar Tablas en Excel") download_images_button = gr.Button("Descargar Gráficos en ZIP") gr.Markdown("**Modelo Completo**") model_completo_output = gr.HTML() pareto_completo_output = gr.Plot() gr.Markdown("**Modelo Simplificado**") model_simplificado_output = gr.HTML() pareto_simplificado_output = gr.Plot() equation_output = gr.HTML() optimization_table_output = gr.Dataframe(label="Tabla de Optimización") prediction_table_output = gr.Dataframe(label="Tabla de Predicciones") contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución") anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada") with gr.Column(): gr.Markdown("## Generar Gráficos de Superficie de Respuesta") fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa") fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5) plot_button = gr.Button("Generar Gráfico") rsm_plot_output = gr.Gallery(label="Gráficos RSM", columns=3, preview=True, height="auto") load_button.click( load_data, inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input], outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row] ) fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output]) plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output]) download_excel_button.click(download_excel, outputs=[gr.File()]) download_images_button.click(download_images, outputs=[gr.File()]) # Ejemplo de uso gr.Markdown("## Ejemplo de uso") gr.Markdown("1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.") gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.") gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.") gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.") gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.") gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.") gr.Markdown("7. Haz clic en 'Descargar Tablas en Excel' para obtener un archivo Excel con todas las tablas generadas.") gr.Markdown("8. Haz clic en 'Descargar Gráficos en ZIP' para obtener un archivo ZIP con todos los gráficos generados.") demo.launch()