OpenFakeArena / app.py
vicliv's picture
Update app.py
abf6f7a
import gradio as gr
from PIL import Image
import torch
import torchvision.transforms as transforms
import json
import os
import numpy as np
import pandas as pd
import random
import onnxruntime as ort
from huggingface_hub import HfApi, hf_hub_download
from transformers import CLIPTokenizer, AutoImageProcessor, AutoModelForImageClassification
from safetensors.torch import load_file as safe_load
import subprocess
from datetime import datetime
# --- Config ---
HUB_REPO_ID = "CDL-AMLRT/OpenArenaLeaderboard"
HF_TOKEN = os.environ.get("HF_TOKEN")
LOCAL_JSON = "leaderboard.json"
HUB_JSON = "leaderboard.json"
MODEL_PATH = "model.safetensors" # βœ… updated filename
MODEL_BACKBONE = "microsoft/swinv2-small-patch4-window16-256"
CLIP_IMAGE_ENCODER_PATH = "clip_image_encoder.onnx"
CLIP_TEXT_ENCODER_PATH = "clip_text_encoder.onnx"
PROMPT_CSV_PATH = "prompts_0.csv"
PROMPT_MATCH_THRESHOLD = 25 # percent
# --- No-op for HF Space ---
def load_assets():
print("Skipping snapshot_download. Assuming files exist via Git LFS in HF Space.")
load_assets()
# --- Load leaderboard ---
def load_leaderboard():
try:
# Download the latest leaderboard from the dataset repo
leaderboard_path = hf_hub_download(
repo_id=HUB_REPO_ID,
repo_type="dataset",
filename=HUB_JSON,
token=HF_TOKEN
)
with open(leaderboard_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
print(f"Failed to load leaderboard from HF Hub: {e}")
return {}
def load_entries():
try:
# grab the CSV of all past plays
csv_path = hf_hub_download(
repo_id=HUB_REPO_ID,
repo_type="dataset",
filename="test/leaderboard_entries.csv",
token=HF_TOKEN
)
df = pd.read_csv(csv_path)
return df
except Exception as e:
print(f"Failed to load leaderboard from HF Hub: {e}")
# if anything goes wrong, fall back to empty
return pd.Dataframe(columns=["file_name","prompt","label","model","split","prediction","user","timestamp"])
leaderboard_scores = load_leaderboard()
leaderboard_entries = load_entries()
def save_leaderboard():
try:
with open(HUB_JSON, "w", encoding="utf-8") as f:
json.dump(leaderboard_scores, f, ensure_ascii=False)
if HF_TOKEN is None:
print("HF_TOKEN not set. Skipping push to hub.")
return
api = HfApi()
api.upload_file(
path_or_fileobj=HUB_JSON,
path_in_repo=HUB_JSON,
repo_id=HUB_REPO_ID,
repo_type="dataset",
token=HF_TOKEN,
commit_message="Update leaderboard"
)
except Exception as e:
print(f"Failed to save leaderboard to HF Hub: {e}")
# --- Load prompts from CSV ---
def load_prompts():
try:
df = pd.read_csv(PROMPT_CSV_PATH)
if "prompt" in df.columns:
return df["prompt"].dropna().tolist()
else:
print("CSV missing 'prompt' column.")
return []
except Exception as e:
print(f"Failed to load prompts: {e}")
return []
PROMPT_LIST = load_prompts()
# --- Load model + processor ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoImageProcessor.from_pretrained(MODEL_BACKBONE)
model = AutoModelForImageClassification.from_pretrained(MODEL_BACKBONE)
model.classifier = torch.nn.Linear(model.config.hidden_size, 2)
model.load_state_dict(safe_load(MODEL_PATH, device="cpu"), strict=False)
model.to(device)
model.eval()
# --- CLIP prompt matching ---
clip_image_sess = ort.InferenceSession(CLIP_IMAGE_ENCODER_PATH, providers=["CPUExecutionProvider"])
clip_text_sess = ort.InferenceSession(CLIP_TEXT_ENCODER_PATH, providers=["CPUExecutionProvider"])
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def compute_prompt_match(image: Image.Image, prompt: str) -> float:
try:
img_tensor = transform(image).unsqueeze(0).numpy().astype(np.float32)
image_features = clip_image_sess.run(None, {clip_image_sess.get_inputs()[0].name: img_tensor})[0][0]
image_features /= np.linalg.norm(image_features)
inputs = clip_tokenizer(prompt, return_tensors="np", padding="max_length", truncation=True, max_length=77)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
text_features = clip_text_sess.run(None, {
clip_text_sess.get_inputs()[0].name: input_ids,
clip_text_sess.get_inputs()[1].name: attention_mask
})[0][0]
text_features /= np.linalg.norm(text_features)
sim = np.dot(image_features, text_features)
return round(sim * 100, 2)
except Exception as e:
print(f"CLIP ONNX match failed: {e}")
return 0.0
# --- Main prediction logic ---
def detect_with_model(image: Image.Image, prompt: str, username: str, model_name: str):
if not username.strip():
return "Please enter your name.", None, [], gr.update(visible=True), gr.update(visible=False), username
prompt_score = compute_prompt_match(image, prompt)
if prompt_score < PROMPT_MATCH_THRESHOLD and model_name.lower() != "real":
message = f"⚠️ Prompt match too low ({round(prompt_score, 2)}%). Please generate an image that better matches the prompt."
return message, None, leaderboard, gr.update(visible=True), gr.update(visible=False), username
# Run model inference
inputs = processor(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
pred_class = torch.argmax(logits, dim=-1).item()
prediction = "Real" if pred_class == 0 else "Fake"
probs = torch.softmax(logits, dim=-1)[0]
confidence = round(probs[pred_class].item() * 100, 2)
score = 1 if prediction == "Real" else 0
message = f"πŸ” Prediction: {prediction} ({confidence}% confidence)\n🧐 Prompt match: {round(prompt_score, 2)}%"
if prediction == "Real" and model_name.lower() != "real":
leaderboard_scores[username] = leaderboard_scores.get(username, 0) + score
message += "\nπŸŽ‰ Nice! You fooled the AI. +1 point!"
else:
if model_name.lower() == "real":
message += "\n You uploaded a real image, this does not count toward the leaderboard!"
else:
message += "\nπŸ˜… The AI caught you this time. Try again!"
save_leaderboard()
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
leaderboard_table = [[name, points] for name, points in sorted_scores]
type_image = "real" if model_name.lower() == "real" else "fake"
image_dir = os.path.join("test", type_image)
os.makedirs(image_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_filename = f"{timestamp}.jpg"
image_path = os.path.join(image_dir, image_filename)
image.save(image_path)
csv_path = os.path.join("test", "leaderboard_entries.csv")
leaderboard_entries.loc[len(leaderboard_entries)] = [f"test/{type_image}/{image_filename}", prompt, type_image, model_name.lower(), "test", prediction.lower(), username, datetime.now().isoformat()]
leaderboard_entries.to_csv(csv_path, index=False)
try:
from huggingface_hub import HfApi
api = HfApi()
api.upload_file(
path_or_fileobj=image_path,
path_in_repo=f"test/{type_image}/{image_filename}",
repo_id=HUB_REPO_ID,
repo_type="dataset",
token=HF_TOKEN,
commit_message="Add passing image"
)
api.upload_file(
path_or_fileobj=csv_path,
path_in_repo="test/leaderboard_entries.csv",
repo_id=HUB_REPO_ID,
repo_type="dataset",
token=HF_TOKEN,
commit_message="Update leaderboard CSV"
)
except Exception as e:
print(f"Failed to save image to HF Hub: {e}")
return (
message,
image,
leaderboard_table,
gr.update(visible=False),
gr.update(visible=True),
username
)
def get_random_prompt():
return random.choice(PROMPT_LIST) if PROMPT_LIST else "A synthetic scene with dramatic lighting"
def load_initial_state():
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
leaderboard_table = [[name, points] for name, points in sorted_scores]
return gr.update(value=get_random_prompt()), leaderboard_table
# --- Gradio UI ---
with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo:
gr.Markdown("## 🌝 OpenFake Arena")
gr.Markdown("Welcome to the OpenFake Arena!\n\n**Your mission:** Generate a synthetic image for the prompt, upload it, and try to fool the AI detector into thinking it’s real.\n\n**Rules:**\n\n- You can modify the prompt on your end, but the image needs to have the same content. We verify the content with a CLIP similarity threshold.\n\n- Enter \"real\" in the model used to upload and test a real image. You don't need to follow the prompt for real images.\n\n- It is important to enter the correct model name for licensing.\n\n- Only synthetic images count toward the leaderboard!\n\n\nNote: The detector is still in early development. The prompt is not used for prediction, only the image.")
with gr.Group(visible=True) as input_section:
username_input = gr.Textbox(label="Your Name", placeholder="Enter your name", interactive=True)
model_input = gr.Textbox(label="Model used, specify the version (e.g., Imagen 3, Dall-e 3, Midjourney 6). Write \"Real\" when uploading a real image.", placeholder="Name of the model used to generate the image", interactive=True)
# 🚫 Freeze this block: do not allow edits to the prompt input component's configuration.
with gr.Row():
prompt_input = gr.Textbox(
interactive=False,
label="Prompt to match",
placeholder="e.g., ...",
value="",
lines=2
)
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Synthetic Image")
with gr.Row():
submit_btn = gr.Button("Upload")
try_again_btn = gr.Button("Try Again", visible=False)
with gr.Group():
gr.Markdown("### 🎯 Result")
with gr.Row():
prediction_output = gr.Textbox(label="Prediction", interactive=False, elem_id="prediction_box")
image_output = gr.Image(label="Submitted Image", show_label=False)
with gr.Group():
gr.Markdown("### πŸ† Leaderboard")
leaderboard = gr.Dataframe(
headers=["Username", "Score"],
datatype=["str", "number"],
interactive=False,
row_count=5,
visible=True
)
submit_btn.click(
fn=detect_with_model,
inputs=[image_input, prompt_input, username_input, model_input],
outputs=[
prediction_output,
image_output,
leaderboard,
input_section,
try_again_btn,
username_input
]
)
try_again_btn.click(
fn=lambda name: (
"", # Clear prediction text
None, # Clear uploaded image
leaderboard, # Clear leaderboard (temporarily, gets reloaded on next submit)
gr.update(visible=True), # Show input section
gr.update(visible=False), # Hide "Try Again" button
name, # Keep username
gr.update(value=get_random_prompt()), # Load new prompt
None # Clear image input
),
inputs=[username_input],
outputs=[
prediction_output,
image_output,
leaderboard,
input_section,
try_again_btn,
username_input,
prompt_input,
image_input # ← added output to clear image
]
)
demo.load(
fn=load_initial_state,
outputs=[prompt_input, leaderboard]
)
gr.HTML("""
<script>
document.addEventListener('DOMContentLoaded', function () {
const target = document.getElementById('prediction_box');
const observer = new MutationObserver(() => {
if (target && target.innerText.trim() !== '') {
window.scrollTo({ top: 0, behavior: 'smooth' });
}
});
if (target) {
observer.observe(target, { childList: true, subtree: true });
}
});
</script>
""")
if __name__ == "__main__":
demo.launch()