Spaces:
Sleeping
Sleeping
Akshatha Arodi
commited on
Commit
Β·
78a0909
1
Parent(s):
538a51c
Move models and leaderboard assets to Git LFS
Browse files- .gitattributes +3 -0
- app copy.py +247 -0
- app.py +10 -3
- clip_image_encoder.onnx +3 -0
- clip_text_encoder.onnx +3 -0
- generate2_1.csv +3 -0
- leaderboard.json +3 -0
- mobilenet_v2_fake_detector.onnx +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.safetensprs filter=lfs diff=lfs merge=lfs -text
|
app copy.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import onnxruntime as ort
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import random
|
10 |
+
from huggingface_hub import snapshot_download, HfApi
|
11 |
+
from transformers import CLIPTokenizer
|
12 |
+
|
13 |
+
# --- Config ---
|
14 |
+
HUB_REPO_ID = "CDL-AMLRT/OpenArenaLeaderboard"
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
LOCAL_JSON = "leaderboard.json"
|
17 |
+
HUB_JSON = "leaderboard.json"
|
18 |
+
MODEL_PATH = "mobilenet_v2_fake_detector.onnx"
|
19 |
+
CLIP_IMAGE_ENCODER_PATH = "clip_image_encoder.onnx"
|
20 |
+
CLIP_TEXT_ENCODER_PATH = "clip_text_encoder.onnx"
|
21 |
+
PROMPT_CSV_PATH = "generate2_1.csv"
|
22 |
+
PROMPT_MATCH_THRESHOLD = 10 # percent
|
23 |
+
|
24 |
+
# --- Download leaderboard + model checkpoint from HF Hub ---
|
25 |
+
def load_assets():
|
26 |
+
try:
|
27 |
+
snapshot_download(
|
28 |
+
repo_id=HUB_REPO_ID,
|
29 |
+
local_dir=".",
|
30 |
+
repo_type="dataset",
|
31 |
+
token=HF_TOKEN,
|
32 |
+
allow_patterns=[HUB_JSON, MODEL_PATH, CLIP_IMAGE_ENCODER_PATH, CLIP_TEXT_ENCODER_PATH, PROMPT_CSV_PATH]
|
33 |
+
)
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Failed to load assets from HF Hub: {e}")
|
36 |
+
|
37 |
+
load_assets()
|
38 |
+
|
39 |
+
# --- Load prompts from CSV ---
|
40 |
+
def load_prompts():
|
41 |
+
try:
|
42 |
+
df = pd.read_csv(PROMPT_CSV_PATH)
|
43 |
+
if "prompt" in df.columns:
|
44 |
+
return df["prompt"].dropna().tolist()
|
45 |
+
else:
|
46 |
+
print("CSV missing 'prompt' column.")
|
47 |
+
return []
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Failed to load prompts: {e}")
|
50 |
+
return []
|
51 |
+
|
52 |
+
PROMPT_LIST = load_prompts()
|
53 |
+
|
54 |
+
def load_initial_state():
|
55 |
+
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
|
56 |
+
leaderboard_table = [[name, points] for name, points in sorted_scores]
|
57 |
+
return gr.update(value=get_random_prompt()), leaderboard_table
|
58 |
+
|
59 |
+
|
60 |
+
# --- Load leaderboard ---
|
61 |
+
def load_leaderboard():
|
62 |
+
try:
|
63 |
+
with open(HUB_JSON, "r") as f:
|
64 |
+
return json.load(f)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Failed to read leaderboard: {e}")
|
67 |
+
return {}
|
68 |
+
|
69 |
+
|
70 |
+
leaderboard_scores = load_leaderboard()
|
71 |
+
|
72 |
+
# --- Save and push to HF Hub ---
|
73 |
+
def save_leaderboard():
|
74 |
+
try:
|
75 |
+
with open(HUB_JSON, "w", encoding="utf-8") as f:
|
76 |
+
json.dump(leaderboard_scores, f, ensure_ascii=False)
|
77 |
+
|
78 |
+
if HF_TOKEN is None:
|
79 |
+
print("HF_TOKEN not set. Skipping push to hub.")
|
80 |
+
return
|
81 |
+
|
82 |
+
api = HfApi()
|
83 |
+
api.upload_file(
|
84 |
+
path_or_fileobj=HUB_JSON,
|
85 |
+
path_in_repo=HUB_JSON,
|
86 |
+
repo_id=HUB_REPO_ID,
|
87 |
+
repo_type="dataset",
|
88 |
+
token=HF_TOKEN,
|
89 |
+
commit_message="Update leaderboard"
|
90 |
+
)
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Failed to save leaderboard to HF Hub: {e}")
|
93 |
+
|
94 |
+
# --- Load ONNX models ---
|
95 |
+
session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"])
|
96 |
+
input_name = session.get_inputs()[0].name
|
97 |
+
|
98 |
+
clip_image_sess = ort.InferenceSession(CLIP_IMAGE_ENCODER_PATH, providers=["CPUExecutionProvider"])
|
99 |
+
clip_text_sess = ort.InferenceSession(CLIP_TEXT_ENCODER_PATH, providers=["CPUExecutionProvider"])
|
100 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
101 |
+
|
102 |
+
transform = transforms.Compose([
|
103 |
+
transforms.Resize((224, 224)),
|
104 |
+
transforms.ToTensor(),
|
105 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
|
106 |
+
])
|
107 |
+
|
108 |
+
def compute_prompt_match(image: Image.Image, prompt: str) -> float:
|
109 |
+
try:
|
110 |
+
img_tensor = transform(image).unsqueeze(0).numpy().astype(np.float32)
|
111 |
+
image_features = clip_image_sess.run(None, {clip_image_sess.get_inputs()[0].name: img_tensor})[0][0]
|
112 |
+
image_features /= np.linalg.norm(image_features)
|
113 |
+
|
114 |
+
inputs = clip_tokenizer(prompt, return_tensors="np", padding="max_length", truncation=True, max_length=77)
|
115 |
+
input_ids = inputs["input_ids"]
|
116 |
+
attention_mask = inputs["attention_mask"]
|
117 |
+
text_features = clip_text_sess.run(None, {
|
118 |
+
clip_text_sess.get_inputs()[0].name: input_ids,
|
119 |
+
clip_text_sess.get_inputs()[1].name: attention_mask
|
120 |
+
})[0][0]
|
121 |
+
text_features /= np.linalg.norm(text_features)
|
122 |
+
|
123 |
+
sim = np.dot(image_features, text_features)
|
124 |
+
return round(sim * 100, 2)
|
125 |
+
except Exception as e:
|
126 |
+
print(f"CLIP ONNX match failed: {e}")
|
127 |
+
return 0.0
|
128 |
+
|
129 |
+
# --- Main prediction logic ---
|
130 |
+
def detect_with_model(image: Image.Image, prompt: str, username: str):
|
131 |
+
if not username.strip():
|
132 |
+
return "Please enter your name.", None, [], gr.update(visible=True), gr.update(visible=False), username
|
133 |
+
|
134 |
+
prompt_score = compute_prompt_match(image, prompt)
|
135 |
+
if prompt_score < PROMPT_MATCH_THRESHOLD:
|
136 |
+
message = f"β οΈ Prompt match too low ({round(prompt_score, 2)}%). Please generate an image that better matches the prompt."
|
137 |
+
return message, None, [], gr.update(visible=True), gr.update(visible=False), username
|
138 |
+
|
139 |
+
image_tensor = transforms.Resize((224, 224))(image)
|
140 |
+
image_tensor = transforms.ToTensor()(image_tensor).unsqueeze(0).numpy().astype(np.float32)
|
141 |
+
outputs = session.run(None, {input_name: image_tensor})
|
142 |
+
prob = round(1 / (1 + np.exp(-outputs[0][0][0])), 2)
|
143 |
+
prediction = "Real" if prob > 0.5 else "Fake"
|
144 |
+
|
145 |
+
score = 1 if prediction == "Real" else 0
|
146 |
+
confidence = round(prob * 100, 2) if prediction == "Real" else round((1 - prob) * 100, 2)
|
147 |
+
|
148 |
+
message = f"π Prediction: {prediction} ({round(confidence, 2)}% confidence)\nπ§ Prompt match: {prompt_score}%"
|
149 |
+
|
150 |
+
if prediction == "Real":
|
151 |
+
leaderboard_scores[username] = leaderboard_scores.get(username, 0) + score
|
152 |
+
message += "\nπ Nice! You fooled the AI. +1 point!"
|
153 |
+
else:
|
154 |
+
message += "\nπ
The AI caught you this time. Try again!"
|
155 |
+
|
156 |
+
save_leaderboard()
|
157 |
+
|
158 |
+
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
|
159 |
+
leaderboard_table = [[name, points] for name, points in sorted_scores]
|
160 |
+
|
161 |
+
return (
|
162 |
+
message,
|
163 |
+
image,
|
164 |
+
leaderboard_table,
|
165 |
+
gr.update(visible=False),
|
166 |
+
gr.update(visible=True),
|
167 |
+
username
|
168 |
+
)
|
169 |
+
|
170 |
+
# --- UI Layout ---
|
171 |
+
def get_random_prompt():
|
172 |
+
return random.choice(PROMPT_LIST) if PROMPT_LIST else "A synthetic scene with dramatic lighting"
|
173 |
+
|
174 |
+
with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo:
|
175 |
+
gr.Markdown("## π OpenFake Arena")
|
176 |
+
gr.Markdown("Welcome to the OpenFake Arena!\n\n**Your mission:** Generate a synthetic image for the prompt, upload it, and try to fool the AI detector into thinking itβs real.\n\n**Rules:**\n- Only synthetic images allowed!\n- No cheating with real photos.\n\nMake it wild. Make it weird. Most of all β make it fun.")
|
177 |
+
|
178 |
+
with gr.Group(visible=True) as input_section:
|
179 |
+
username_input = gr.Textbox(label="Your Name", placeholder="Enter your name", interactive=True)
|
180 |
+
model_input = gr.Textbox(label="Model Used", placeholder="Name of the model used to generate the image", interactive=True)
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
+
prompt_input = gr.Textbox(
|
184 |
+
label="Prompt to use",
|
185 |
+
placeholder="e.g., ...",
|
186 |
+
value="",
|
187 |
+
lines=2
|
188 |
+
)
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
image_input = gr.Image(type="pil", label="Upload Synthetic Image")
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
submit_btn = gr.Button("Upload")
|
195 |
+
|
196 |
+
try_again_btn = gr.Button("Try Again", visible=False)
|
197 |
+
|
198 |
+
with gr.Group():
|
199 |
+
gr.Markdown("### π― Result")
|
200 |
+
with gr.Row():
|
201 |
+
prediction_output = gr.Textbox(label="Prediction", interactive=False)
|
202 |
+
image_output = gr.Image(label="Submitted Image", show_label=False)
|
203 |
+
|
204 |
+
with gr.Group():
|
205 |
+
gr.Markdown("### π Leaderboard")
|
206 |
+
leaderboard = gr.Dataframe(
|
207 |
+
headers=["Username", "Score"],
|
208 |
+
datatype=["str", "number"],
|
209 |
+
interactive=False,
|
210 |
+
row_count=5,
|
211 |
+
visible=True
|
212 |
+
)
|
213 |
+
|
214 |
+
submit_btn.click(
|
215 |
+
fn=detect_with_model,
|
216 |
+
inputs=[image_input, prompt_input, username_input],
|
217 |
+
outputs=[
|
218 |
+
prediction_output,
|
219 |
+
image_output,
|
220 |
+
leaderboard,
|
221 |
+
input_section,
|
222 |
+
try_again_btn,
|
223 |
+
username_input
|
224 |
+
]
|
225 |
+
)
|
226 |
+
|
227 |
+
try_again_btn.click(
|
228 |
+
fn=lambda name: ("", None, [], gr.update(visible=True), gr.update(visible=False), name, gr.update(value=get_random_prompt())),
|
229 |
+
inputs=[username_input],
|
230 |
+
outputs=[
|
231 |
+
prediction_output,
|
232 |
+
image_output,
|
233 |
+
leaderboard,
|
234 |
+
input_section,
|
235 |
+
try_again_btn,
|
236 |
+
username_input,
|
237 |
+
prompt_input
|
238 |
+
]
|
239 |
+
)
|
240 |
+
|
241 |
+
demo.load(
|
242 |
+
fn=load_initial_state,
|
243 |
+
outputs=[prompt_input, leaderboard]
|
244 |
+
)
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
demo.launch()
|
app.py
CHANGED
@@ -51,6 +51,12 @@ def load_prompts():
|
|
51 |
|
52 |
PROMPT_LIST = load_prompts()
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# --- Load leaderboard ---
|
55 |
def load_leaderboard():
|
56 |
try:
|
@@ -60,6 +66,7 @@ def load_leaderboard():
|
|
60 |
print(f"Failed to read leaderboard: {e}")
|
61 |
return {}
|
62 |
|
|
|
63 |
leaderboard_scores = load_leaderboard()
|
64 |
|
65 |
# --- Save and push to HF Hub ---
|
@@ -232,9 +239,9 @@ with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo:
|
|
232 |
)
|
233 |
|
234 |
demo.load(
|
235 |
-
fn=
|
236 |
-
outputs=prompt_input
|
237 |
-
)
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
demo.launch()
|
|
|
51 |
|
52 |
PROMPT_LIST = load_prompts()
|
53 |
|
54 |
+
def load_initial_state():
|
55 |
+
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
|
56 |
+
leaderboard_table = [[name, points] for name, points in sorted_scores]
|
57 |
+
return gr.update(value=get_random_prompt()), leaderboard_table
|
58 |
+
|
59 |
+
|
60 |
# --- Load leaderboard ---
|
61 |
def load_leaderboard():
|
62 |
try:
|
|
|
66 |
print(f"Failed to read leaderboard: {e}")
|
67 |
return {}
|
68 |
|
69 |
+
|
70 |
leaderboard_scores = load_leaderboard()
|
71 |
|
72 |
# --- Save and push to HF Hub ---
|
|
|
239 |
)
|
240 |
|
241 |
demo.load(
|
242 |
+
fn=load_initial_state,
|
243 |
+
outputs=[prompt_input, leaderboard]
|
244 |
+
)
|
245 |
|
246 |
if __name__ == "__main__":
|
247 |
demo.launch()
|
clip_image_encoder.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e557b21fad17709c7a0f4133ad24206cc887f551e58683c200d4afecaba2289c
|
3 |
+
size 351635998
|
clip_text_encoder.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66bab8550f6f98ad825b5df3cf07f31c4d61e2e15dae4c9bc6231949c8faba51
|
3 |
+
size 253958912
|
generate2_1.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdaada95293bac3fe15c07ce4ec5f767592fdba681583b6864ce078a73450b67
|
3 |
+
size 9717958
|
leaderboard.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:714f43571dd0cabdd936f6f460bf62fd588b899856594bc10a153a40e4b7ac7a
|
3 |
+
size 21
|
mobilenet_v2_fake_detector.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fd71df3f186e80b862a4d367ef19e2d19b29ae70588092dce16bfb92e7abbe3
|
3 |
+
size 8878521
|